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Abstract. We study the action of the Hecke triangle groups Gq on λqQ(λ2
q) ∪ {∞} with

λq = 2 cos(π/q). When q = 18, we show the existence of infinitely many distinct orbits
of fixed points of special hyperbolic elements of Gq. We also find new orbits for several
other values of q. These results provide new examples of special affine pseudo-Anosov
homeomorphisms on the unfoldings of regular q-gons. In particular, on the unfolding of the
regular 18-gon, there are infinitely many distinct Veech group orbits of directions invariant
under a special affine pseudo-Anosov.

1. Introduction

The Hecke triangle groups Gq are an infinite family of lattices in SL(2,R) parametrized
by an integer q ≥ 3. The group Gq is generated by the two matrices

S =

(
0 −1
1 0

)
, Tq =

(
1 λq

0 1

)
, (1)

where λq = 2 cos(π/q). Each parabolic element of Gq fixes a unique cusp in P1(R) = R∪{∞},
and each hyperbolic element fixes a pair of distinct points in P1(R). Basic longstanding open
questions of interest about Gq include characterizing the set of cusps [Ros] and the set of
hyperbolic fixed points as subsets of P1(R).

The difficulty of characterizing the cusps of Gq seems to depend mainly on the degree of
the invariant trace field of Gq, defined by

Kq = Q(Tr(A2) : A ∈ Gq) =

{
Q(λq), q odd,

Q(λ2
q), q even,

which is invariant under commensurability, see for instance [McM4]). The cusps of Gq form
a single orbit Gq · ∞. By an inductive argument using the generators in (1), we have

Gq · ∞ ⊂ λqQ(λ2
q) ∪ {∞}. (2)

When q is odd, λqQ(λ2
q) ∪ {∞} is equal to P1(Kq). If Kq = Q, that is, q ∈ {3, 4, 6}, then

Gq is commensurable with SL(2,Z) and it is easy to show that the containment in (2) is
an equality. When Kq is quadratic, equivalently q ∈ {5, 8, 10, 12}, there are several proofs
showing that equality holds in these cases as well, using descent arguments or a study of the
SAF-invariant [Leu], [McM1], [McM3], [Pan].

When Kq has degree at least 3, the question of characterizing the cusps of Gq is wide open,
and it is known that the cusps are strictly contained in λqQ(λ2

q)∪{∞}, see [AS] and references
therein. An important new phenomenon in this case is the existence of special hyperbolic
elements of Gq, which have eigenvalues in Kq. In contrast, a typical hyperbolic element of Gq

has eigenvalues in a quadratic extension of Kq. Fixed points of special hyperbolic elements
of Gq lie in λqQ(λ2

q) and thus provide new examples of Gq-orbits contained in λqQ(λ2
q). Only
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a few examples of such orbits are known [AS], [HMTY], and in all known examples Kq has
degree 3 or 4. One can also obtain lower bounds on the number of orbits of Gq in λqQ(λ2

q)
with algebraic methods, by studying the reduction of Gq modulo 2 or the class number of
Kq [AS], [BR], [HMTY], [Wol].

However, in all cases where Kq has degree at least 3, it was previously unknown whether
the number of orbits of Gq in λqQ(λ2

q) was finite. Surprisingly, for at least one value of q,
special hyperbolic elements are abundant enough to produce infinitely many orbits.

Theorem 1.1. For q = 18, there are infinitely many distinct Gq-orbits of fixed points of
special hyperbolic elements of Gq contained in λqQ(λ2

q).

Hyperbolic elements in Gq with a common power have the same fixed points, and conjugat-
ing a hyperbolic element in Gq only moves its fixed points within their respective Gq-orbits.
Thus, Theorem 1.1 tells us there are infinitely many non-conjugate maximal cyclic subgroups
of special hyperbolic elements in Gq when q = 18.

Let OKq be the ring of integers in Kq, and let O∗
Kq

be its unit group. We searched for
new examples of special hyperbolic elements of Gq by computing the λq-continued fraction
expansions of many elements of λqOKq and λqO∗

Kq
. The examples we found (excluding

q = 18) are shown in Tables 1 and 3 in terms of periodic λq-continued fractions. Table 3
contains some of the examples found for q = 18. In [HMTY], it was conjectured that there
are exactly 2 orbits for G7 in P1(Kq), represented by ∞ and λ2

7 − 1, and distinguished by
residue classes modulo 2. A similar conjecture for the unit group O∗

K7
appears in [RT]. We

expect that the structure of the Gq-orbits in λqQ(λ2
q)∪{∞} is much more complicated, even

for q = 7. For example, all but 27 (rational) integers in the interval [1, 106] are cusps of G7.
The first few exceptional integers are

671, 26197, 98335, 121380, 221444, 249976, 255730, 298572, 327023, 327068, 339794, ...

and all 27 are special hyperbolic fixed points that do not lie in the orbit of λ2
7−1. Regarding

O∗
K7
, letting λ′

7 = −λ2
7 + 2, the unit λ7

7(−λ′
7)

−23 is a special hyperbolic fixed point that does
not lie in the orbit of λ2

7 − 1.
Part of our motivation for studying the Hecke triangle groups Gq comes from the dynamics

of billiards in the regular q-gon and straight-line flows on the translation surfaces (Xq, ωq)
obtained by unfolding these tables. We refer to [AS] for more details about the following
discussion. The surface (Xq, ωq) is obtained from one or two copies of a regular q-gon
by gluing pairs of opposite parallel sides by translations. The derivatives of orientation-
preserving affine automorphisms of (Xq, ωq) form the Veech group Vq, which in this case
is a lattice in SL(2,R) conjugate to Gq or an index 2 subgroup of Gq. As a consequence,
these surfaces satisfy the Veech dichotomy [Vee]: every straight-line flow is either periodic
or uniquely ergodic. However, the Veech dichotomy does not tell us which directions are
periodic. The set of periodic directions for (Xq, ωq) is precisely the set of cusps of Vq, which
is in turn equal to the set of cusps of Gq up to acting by an element of SL(2,R).

The group GL+(2,R) acts on the moduli space of all translation surfaces of a given genus.
By applying an appropriate element M ∈ GL+(2,R) to (Xq, ωq), one can arrange that
the periodic directions for M(Xq, ωq) lie in P1(Kq) [AS], [CS2]. With this normalization, the
directions in P1(Kq) are precisely the directions for which the straight-line flow has vanishing
SAF-invariant. Roughly speaking, the SAF-invariant measures the algebraic obstruction to
being periodic. Periodic straight-line flows have zero SAF-invariant, but it is well-known that
the converse is not true. A striking source of uniquely ergodic flows with zero SAF-invariant
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are flows invariant under a special affine pseudo-Anosov homeomorphism. The first known
examples are the Arnoux-Yoccoz pseudo-Anosovs [AY], and other families of examples are
constructed in [CS1], [DS]. These pseudo-Anosovs are affine automorphisms whose derivative
is a special hyperbolic element of the associated Veech group.

In the language of translation surfaces, Theorem 1.1 tells us that on the unfolding of the
regular 18-gon, special affine pseudo-Anosovs are abundant. Moreover, this conclusion only
depends on the commensurability class of the Veech group.

Theorem 1.2. For any translation surface (X,ω) whose Veech group V is commensurable
to the G18 triangle group, there are infinitely many distinct V -orbits of directions that are
invariant under a special affine pseudo-Anosov homeomorphism of (X,ω).

In particular, for a suitable M ∈ GL+(2,R), the Veech group of M(X18, ω18) acts on
P1(K18) and there are infinitely many distinct orbits in P1(K18) for this action. To the best
of our knowledge, Theorem 1.2 provides the first known examples of lattice Veech groups that
act on the projective line over their invariant trace field with infinitely many orbits. For a
lattice Veech group, the invariant trace field is equal to its trace field, the field generated over
Q by the traces [Hoo]. Note that by [McM1], for any lattice Veech group with a rational or
quadratic trace field K, after normalizing every element of P1(K) is a cusp and there are only
finitely many orbits of cusps. We also remark that the special pseudo-Anosovs in Theorem
1.2 lie in infinitely many distinct conjugacy classes in the mapping class group Modg, where
g is the genus of X.
Our proof of Theorem 1.1 is obtained via explicit constructions. For example, letting

T = T18, we will see that(
ST 4ST−1ST−4ST

)k
ST 2ST−2ST−2

(
STST 4ST−1ST−4

)k
ST 2 (3)

is a special hyperbolic element of G18 for all k ≥ 0. In the next section, we will provide
several other infinite families of special hyperbolic elements. For any q, the eigenvalues
of a special hyperbolic element of Gq lie in the unit group O∗

Kq
. When q = 18, we have

O∗
K18

∼= Z/2× Z2. Despite this, all of the special hyperbolic elements we found in this case
had eigenvalues lying in a single cyclic group up to sign. In particular, it turns out that the
eigenvalues of the special hyperbolic elements in (3) are all powers of the unit

u18 = 2λ4
18 − 4λ2

18 + 1. (4)

We observed similar coincidences for other values of q, especially q = 7. In all but one case,
the eigenvalues of the special hyperbolic elements in G7 we found were powers of the unit

u7 = λ2
7 + λ7 (5)

up to sign, which leads us to suspect that similar constructions to (3) are possible for some
other values of q. A partial analogue of this phenomenon is known to arise in real quadratic
fields via the classical continued fractions associated to G3 = SL(2,Z), see [McM2] and [Wil]
for constructions. However, we emphasize that the associated hyperbolic elements of G3 are
not special, indeed G3 does not contain any special hyperbolic elements.
More generally, Theorem 1.1, the occurrence of “rare” Gq-orbits as shown in Tables 1 and

2, and the behavior shown in Figure 1 (right), seem to suggest a positive answer to the
following question.

Question 1.3. For all q such that Kq has degree at least 3, are there infinitely many distinct
Gq-orbits contained in λqQ(λ2

q)?
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Lastly, to emphasize how poorly understood the sets of cusps and hyperbolic fixed points
of Gq still are, the following questions are open in all cases where Kq has degree at least 3.

(1) Is there an element of λqQ(λ2
q) that is not fixed by any element of Gq?

(2) Is there an (always terminating) algorithm that takes as input x ∈ λqQ(λ2
q) and

outputs whether x is a cusp of Gq? A hyperbolic fixed point of Gq?
(3) For q odd, does Gq have infinitely many integer cups?

In [Bou] and [HMTY], it is conjectured that question (1) has a negative answer for q = 7, 9.
Based on our searches, we expect that question (1) also has a negative answer for q = 18,
and possibly for q = 14, 30 as well. Note that for each q, a negative answer to (1) implies
a positive answer to (2). For question (3), our searches suggest a positive answer for q = 7, 9.

Acknowledgements. The author thanks Curt McMullen for many inspiring discussions on
this topic. This work was primarily carried out while the author was supported by an NSF
GRFP under grant DGE-1144152. The author also acknowledges support from the NSF
under grant DMS-2303185.

Special hyperbolic elements of G18

We recall material about Hecke triangle groups, their action on P1(R) via Möbius trans-
formations, and traces of matrix products in SL(2,R). We then prove Theorem 1.1.

Stabilizers and conjugacy classes in Gq. Amatrix A ∈ SL(2,R) is hyperbolic if |Tr(A)| >
2, parabolic if |Tr(A)| = 2, and elliptic if |Tr(A)| < 2. Similarly for elements of PSL(2,R). As
a subgroup of SL(2,R), the Hecke triangle group Gq acts on P1(R) by Möbius transformations
with ±I acting trivially. We denote by Gq the image of Gq in PSL(2,R).
The stabilizer in Gq of a point in P1(R) is cyclic (Theorem 8.1.2 in [Bea]). The stabilizer

of a hyperbolic fixed point is a maximal cyclic subgroup consisting of hyperbolic elements.
Primitive hyperbolic elements are the generators of these stabilizers. By sending a hyperbolic
element to its attracting fixed point, we obtain a bijection between primitive hyperbolic
elements of Gq and hyperbolic fixed points, and similarly a bijection between conjugacy
classes of primitive hyperbolic elements in Gq and orbits of hyperbolic fixed points. We
record this discussion with the following lemma.

Lemma 1.4. If A1, A2 ∈ Gq are hyperbolic elements whose attracting fixed points lie in the
same Gq-orbit, then there is B ∈ Gq and integers m1,m2 > 0 such that BAm1

1 B−1 = ±Am2
2 .

The group Gq is isomorphic to a free product of two cyclic groups of orders 2 and q,
respectively. The images in PSL(2,R) of the matrices

S =

(
0 −1
1 0

)
, Uq = STq =

(
0 −1
1 λq

)
realize the presentation

Gq = ⟨S, Uq | S2 = U q
q = I⟩.

Denote T = Tq and U = Uq. Each element in Gq can thus be expressed uniquely as a reduced
word in S and U (Theorem 4.1 in [MKS]). These reduced words are powers of S or U or
have the form

Sε1Ua1SUa2 · · ·SUak−1SUakSεk
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for some k > 0, 1 ≤ a1, . . . , ak ≤ q − 1, and ε1, εk ∈ {0, 1}. A reduced word is cyclically
reduced if it is a power of S or U or if ε1 ̸= εk above. Up to conjugation by S, a cyclically
reduced word is a power of S or U or has the form

SUa1 · · ·SUak

for some k > 0 and 1 ≤ a1, . . . , ak ≤ q − 1. Two cyclically reduced words of this form are
conjugate in Gq if and only if they are cyclic permutations of each other (Theorem 4.2 in
[MKS]). For convenience, we will use a weaker version of this fact for words in S, T .

Lemma 1.5. Consider elements of Gq of the form

ST n1 · · ·ST nk (6)

with k > 0, nj ̸= 0 for 1 ≤ j ≤ k and not all the same sign, and such that in the cyclically
ordered sequence n1, . . . , nk, the maximum number of consecutive 1’s or consecutive (−1)’s
is less than q/2 − 2. Two such elements are conjugate in Gq if and only if they are cyclic
permutations of each other.

Proof. For each 1 ≤ j ≤ k such that nj ≥ 2 or nj ≤ −2, substitute ST nj with U(SU)nj−1

or S(U q−1S)−nj , respectively. For each maximal sequence of consecutive 1’s in the cycli-
cally ordered sequence n1, . . . , nk of length r, substitute (ST )r with U r. For each maximal
sequence of consecutive (−1)’s of length r, substitute (ST−1)r with SU q−rS. We have rewrit-
ten ST n1 · · ·ST nk as a concatenation of words W1 · · ·Wℓ with 1 ≤ ℓ ≤ k. Each word Ws is a
reduced word in S, U , and the words coming from positive integers in n1, . . . , nk begin and
end with U , while the words coming from negative integers begin and end in S.
If s, s + 1, . . . , s + t is a maximal sequence such that Ws,Ws+1, . . . ,Ws+t all come from

positive integers, then the concatenation WsWs+1 · · ·Ws+t has the form

U b0U(SU)a1−1U b1U(SU)a2−1U b2 · · ·U(SU)am−1U bm

with a1, . . . , am ≥ 2 and 0 ≤ b0, . . . , bm < q/2− 2. Combining adjacent U ’s gives us

U b0+1(SU)a1−2SU b1+2(SU)a2−2SU b2+2 · · · (SU)am−2SU bm+1 (7)

which is reduced after removing (SU)ai−2 when ai−2 = 0. If s, s+1, . . . , s+t is a maximal se-
quence such that Ws,Ws+1, . . . ,Ws+t all come from negative integers, then the concatenation
WsWs+1 · · ·Ws+t has the form

(SU q−b0S)S(U q−1S)a1(SU q−b1S)S(U q−1S)a2(SU q−b2S) · · ·S(U q−1S)am(SU q−bmS)

with a1, . . . , ak ≥ 2, 0 ≤ b0, . . . , bm < q/2 − 2. Cancelling adjacent S’s and then combining
adjacent U ’s gives us

SU q−b0−1S(U q−1S)a1−2U q−b1−2S(U q−1S)a2−2U q−b2−2S · · · (U q−1S)am−2SU q−bm−1S (8)

which is reduced after removing (U q−1S)aj−2 when aj − 2 = 0. Since the reduced words in
(7) begin and end in U , and the reduced words in (8) begin and end in S, a concatenation of
such words that alternates between (8) and (7) is also reduced. In this way, we can rewrite
ST n1 · · ·ST nk as a reduced word in S, U .
Suppose two elements ST n1 · · ·ST nk and STm1 · · ·STmℓ ofGq as in (6) are conjugate inGq.

Since n1, . . . , nk do not all have the same sign, by conjugating by ST n1 · · ·ST nj if necessary
we may assume n1 < 0 and nk > 0, and we may similarly assume m1 < 0 and mℓ > 0.
The associated reduced words in S, U are also conjugate, and by our sign assumptions, they
are both cyclically reduced words beginning with S and ending in U , and thus are cyclic
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permutations of each other. Now, the powers Up that appear in (7) all satisfy 1 ≤ p < q/2,
and they determine the associated maximal sequence of positive integers in n1, . . . , nk, with
bj the lengths of maximal sequences of consecutive 1’s and aj the integers greater than 1.
Similarly, the powers Up that appear in (8) all satisfy q/2 < p ≤ q − 1, and they determine
the associated maximal sequence of negative integers in n1, . . . , nk with bj the lengths of
maximal sequences of consecutive (−1)’s and aj the integers less than −1. Thus, since
these cyclically reduced words in S, U are cyclic permutations of each other, the associated
sequences n1, . . . , nk and m1, . . . ,mℓ must be cyclic permutations of each other. □

Trace relations. Recall that for any matrix A ∈ SL(2,R),

A+ A−1 = Tr(A)I.

It follows that for any A,B ∈ SL(2,R),

Tr(AB) + Tr(AB−1) = Tr(A) Tr(B). (9)

We will be interested in the traces of certain matrix products of the form

Mk,ℓ = DℓCBkA

with A,B,C,D ∈ SL(2,R) and k, ℓ ∈ Z.

Lemma 1.6. Suppose Tr(B) = Tr(D). Then for all integers k ≥ 3,

Tr(Mk,k) = (Tr(B)2 − 1)(Tr(Mk−1,k−1)− Tr(Mk−2,k−2)) + Tr(Mk−3,k−3).

Proof. Applying (9) and cyclic commutivity of trace, we get

Tr(Mk,ℓ) = Tr(B) Tr(Mk−1,ℓ)− Tr(Mk−2,ℓ)

for all k ≥ 2, ℓ ≥ 0, and similarly

Tr(Mk,ℓ) = Tr(B) Tr(Mk,ℓ−1)− Tr(Mk,ℓ−2)

for all k ≥ 0, ℓ ≥ 2. It follows that for all k ≥ 2,

Tr(Mk,k) = Tr(B)2Tr(Mk−1,k−1) + Tr(Mk−2,k−2)

− Tr(B)(Tr(Mk−1,k−2) + Tr(Mk−2,k−1)) (10)

and that

Tr(Mk,k−1) + Tr(Mk−1,k) = 2Tr(B) Tr(Mk−1,k−1)− (Tr(Mk−1,k−2) + Tr(Mk−2,k−1)). (11)

Now suppose k ≥ 3. By applying (10) to Tr(Mk,k) and Tr(Mk−1,k−1), and applying (11)
to Tr(Mk−1,k−2) + Tr(Mk−2,k−1), we get

Tr(Mk,k) = Tr(B)2Tr(Mk−1,k−1)− Tr(B)(Tr(Mk−1,k−2) + Tr(Mk−2,k−1)) + Tr(Mk−2,k−2)

= Tr(B)2Tr(Mk−1,k−1) + (1− 2Tr(B)2) Tr(Mk−2,k−2)

+ Tr(B)(Tr(Mk−2,k−3) + Tr(Mk−3,k−2))

= (Tr(B)2 − 1)Tr(Mk−1,k−1) + (1− Tr(B)2) Tr(Mk−2,k−2)

+ Tr(Mk−1,k−1)− Tr(B)2Tr(Mk−2,k−2) + Tr(B)(Tr(Mk−2,k−3) + Tr(Mk−3,k−2))

= (Tr(B)2 − 1)(Tr(Mk−1,k−1)− Tr(Mk−2,k−2)) + Tr(Mk−3,k−3).

□
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Lemma 1.7. Suppose that for some integer n ≥ 0,

Tr(M0,0) = Tr(Bn), Tr(M1,1) = Tr(Bn+2), Tr(M2,2) = Tr(Bn+4).

Then for all integers k ≥ 3,

Tr(Mk,k) = Tr(Bn+2k).

Proof. Let t, t−1 be the eigenvalues of B, so that Tr(Bm) = tm + t−m for all m ∈ Z. We
induct on k, and we may assume k ≥ 3. By Lemma 1.6 and induction on k,

Tr(Mk,k) = (t2 + 1 + t−2)(tn+2(k−1) + t−n−2(k−1) − tn+2(k−2) − t−n−2(k−2))

+ (tn+2(k−3) + t−n−2(k−3)).

Expanding the right-hand side and canceling terms reduces to

Tr(Mk,k) = tn+2k + t−n−2k = Tr(Cn+2k).

□

Families of special hyperbolic elements. A hyperbolic element of Gq is special if its

eigenvalues lie in Kq. Denote λ = λq. Let A =

(
a b
c d

)
∈ Gq be a special hyperbolic element,

and let t, t−1 ∈ Kq be its eigenvalues. Note that c ̸= 0 since A does not fix the cusp ∞. Since
A is special, Tr(A)2− 4 = (t− t−1)2 is a square in Kq. Solving A ·x = (ax+ b)/(cx+ d) = x,
we see that the fixed points of A are given by x = ((a− d)± (t− t−1))/2c. For q odd, since
the matrix entries of Gq lie in Z[λ], we have x ∈ Q(λ) = λQ(λ2). For q even, by an inductive
argument using the generators S, Tq, the matrix A has one of the forms(

a b0λ
c0λ d

)
,

(
a0λ b
c d0λ

)
,

with a0, b0, c0, d0 ∈ Z[λ2] (see Corollary 1 in [Ros]). Since Tr(A) ∈ Kq = Q(λ2) is nonzero,
A is of the first form and x = ((a − d) ± (t − t−1))/2λc0 ∈ λQ(λ2). Thus, fixed points of
special hyperbolic elements of Gq lie in λQ(λ2).

We now apply Lemma 1.7 to produce infinite families of orbits of special hyperbolic fixed
points. Denote T = T18 and λ = λ18. For n1, . . . , nk a finite sequence of nonzero integers,
define

M(n1, . . . , nk) = ST nk · · ·ST n1 ∈ G18.

Additionally, denote by (n1, . . . , nk)
m the concatenation of m copies of n1, . . . , nk. Lastly,

recall the unit u18 = 2λ4 − 4λ2 + 1 from (4) and denote u = u18. All of the computational
checks in the proof of the following theorem were carried out with SageMath.
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Theorem 1.8. For all integers k ≥ 0, the following elements of G18 are special hyperbolic
elements. The fixed points of each family form infinitely many distinct G18-orbits in λQ(λ2).

M(2, (−4,−1, 4, 1)k,−2,−2, 2, (1,−4,−1, 4)k)

M(4, (2,−2,−2, 2)k, 1,−4,−1, (2, 2,−2,−2)k)

M(−4, (−1, 8, 1,−2)k,−2, 1, 2, (−2,−1, 8, 1)k)

M(−1, (−4, 2, 1,−2)k,−2, 1, 8, (1,−1,−1, 16)k)

M(16, (1,−2,−1, 8)k,−1,−1, 1, (8, 1,−2,−1)k)

M(4, (2,−2,−2, 2)k, 2,−2,−1, 4, 1,−2,−2, (2, 2,−2,−2)k)

M(4, (1,−2,−4, 2)k, 1,−2,−2, 4, 2,−2,−1, (2, 4,−2,−1)k)

M(2, (−4,−1, 4, 1)k,−4,−1, 2, 2,−2,−1, 4, (1,−4,−1, 4)k)

M(2, (−2,−1, 8, 1)k,−2,−1, 4, 2,−4,−1, 2, (1,−8,−1, 2)k)

M(−4, (−1, 8, 1,−2)k,−1, 8,−1,−1, 1, 8, 1, (−2,−1, 8, 1)k)

M(2, (−8,−1, 2, 1)k,−8,−1, 1, 2,−1,−1, 8, (1,−2,−1, 8)k)

M(2, (−1,−1, 16, 1)k,−1,−1, 8, 2,−8,−1, 1, (1,−16,−1, 1)k)

M(16, (1,−2,−1, 8)k, 1,−2,−2, 1, 2,−2,−1, (8, 1,−2,−1)k)

Proof. The proofs for each family are similar, so we only present the proof for the first family

M(2, (−4,−1, 4, 1)k,−2,−2, 2, (1,−4,−1, 4)k)

in detail. Up to cyclic permutation, the repeating parts in this family are equal to

M(4, 1,−4,−1) =

(
4λ2 + 1 16λ3

4λ3 16λ4 − 4λ2 + 1

)
and the non-repeating part (the k = 0 case) is equal to

M(2, 2,−2,−2) =

(
4λ2 + 1 8λ3

8λ3 16λ4 − 4λ2 + 1

)
and both of these matrices have trace

16λ4 + 2 = u2 + u−2.

This family has the form

Mk = DkCBkA, k ≥ 0,

with A = M(2), B = M(4, 1,−4,−1), C = M(−2,−2, 2), D = M(1,−4,−1, 4). By the
above calculations,

Tr(M0) = Tr(B) = Tr(D) = u2 + u−2.

Additionally, we check using Sage that

Tr(M1) = 1847952λ4 − 3838464λ2 + 1391618 = u6 + u−6

Tr(M2) = 110983509904λ4 − 235185378816λ2 + 85747037186 = u10 + u−10

and thus by Lemma 1.7,

Tr(Mk) = u4k+2 + u−4k−2
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for all k ≥ 0. Since u ∈ Kq and |u| ≈ 15.582 > 1, this means Mk is a special hyperbolic
element of G18 for all k ≥ 0.
Suppose that k1, k2 ≥ 0 are integers such that the attracting fixed points of Mk1 ,Mk2 lie

in the same G18-orbit. By Lemma 1.4, there are integers m1,m2 > 0 such that Mm1
k1

and
±Mm2

k2
are conjugate in G18. The sequences

(2, (−4,−1, 4, 1)kj ,−2,−2, 2, (1,−4,−1, 4)kj)mj

defining M
mj

kj
do not contain multiple consecutive 1’s or (−1)’s, so Lemma 1.5 tells us that

these sequences are cyclic permutations of each other. By counting the number of 2’s in each
sequence, we see that 2m1 = 2m2 and thus m1 = m2. Then by counting the number of 4’s,
we see that 2k1m1 = 2k2m2 = 2k2m1 and thus k1 = k2. Thus, the attracting fixed points of
Mk, k ≥ 0, lie in infinitely many distinct G18-orbits. □

λq-continued fraction expansions

Many questions about the Hecke triangle groupsGq can be studied computationally using a
family of continued fraction algorithms introduced by Rosen [Ros]. Throughout, we denote
λ = λq, K = Kq, and T = Tq. Rosen showed that any x ∈ R can be expressed as a
λ-continued fraction

x = [a0, a1, a2, . . . ] = a0λ− 1

a1λ− 1
a2λ−···

(12)

with a0 ∈ Z, ai ∈ Z \ {0} for i ≥ 1, in a unique way by requiring

x− a0λ ∈ (−λ/2, λ/2]

−1/(x− a0λ)− a1λ ∈ (−λ/2, λ/2]

...

The cusps Gq · ∞ are precisely the elements of P1(R) that can be expressed as finite λ-
continued fractions [a0, a1, . . . , aN ]. If there exists n ≥ 1 and i0 ≥ 0 such that ai = ai+n for
all i ≥ i0, we say that the λ-continued fraction is preperiodic, and periodic if we can take
i0 = 0. If x is a periodic λ-continued fraction, we denote this by

x = [a0, a1, . . . , an]

where n is the minimal period, and x is fixed by

Mx = ST−an · · ·ST−a0 ∈ Gq.

For all x ∈ P1(R), we have

S · (−x) = −(S · x), T · (−x) = −(T−1 · x).
It follows that the set of cusps and the set of hyperbolic fixed points are preserved under
negation. Since λQ(λ2) is invariant under negation, the set of special hyperbolic fixed points
is also preserved under negation. Since λ/2 is a cusp [Ros], for any periodic λ-continued

fraction, negation simply negates its periodic part. Suppose x = [a0, a1, . . . , an] is fixed by

a hyperbolic element Mx = ST−an · · ·ST−a0 , and let x′ = [an, an−1, . . . , a0]. Since Mx and
M−1

x have the same fixed points and SM−1
x S−1 = ST a0 · · ·ST an , we see that Mx also fixes

S · (−x′) = 1/x′. The periodic λ-continued fractions obtained by negating and reversing the
periodic part do not necessarily lie in the same Gq-orbit. In this way, we may obtain 1, 2,
or 4 distinct Gq-orbits.
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Below, we summarize the computer searches we carried out to find new Gq-orbits of special
hyperbolic fixed points. All of our computations were done using SageMath, which supports
arithmetic in number fields and arbitrary precision numerical computations.

G7-orbits. Let q = 7. Then λ has one other Galois conjugate with absolute value greater
than 1, given by λ′ = −λ2+2. The ring of integers of Kq is Z[λ], and the positive unit group
is generated by λ,−λ′. We counted the number of elements of each G7-orbit in Z∩ [1, 106] by
computing the associated λ-continued fraction expansions, and similarly for a large subset
of the positive unit group and the ring of integers. The results are reported in Table 1. All
of the λ-continued fraction expansions we computed were either finite or preperiodic.

We found several new G7-orbits of special hyperbolic fixed points, and Table 1 lists the
associated periodic λ-continued fractions, up to negation and reversal. We obtain a lower
bound on the number N7 of G7-orbits in P1(Kq) of

N7 ≥ 1 + 1 + 4 + 4 + 4 + 4 + 2 + 4 = 24

Note that only 13 of these 24 orbits appear in the Table 1. In particular, even up to negation
and reversal of periodic parts, the orbit of

531

7
λ2 +

402

7
λ− 319

7
= [169, 1, 2,−1,−2,−1]

does not appear. We found this orbit of special hyperbolic fixed points by checking all
periodic λ-continued fractions of the form [a1, a2, . . . , a6] with

∏6
j=1 ai = ±22 · 132. Lastly,

for all but the last row in the q = 7 section of Table 1, the eigenvalues of the associated
special hyperbolic elements are powers of the unit

u7 = λ2
7 + λ7.

We were unable to prove a version of Theorem 1.8 in the q = 7 case though.

G9-orbits. Let q = 9. Again, the ring of integers of Kq is Z[λ], and the positive unit group
is generated by λ and −λ′ = λ2− 2. Table 2 counts the number of elements of each G9-orbit
in a large subset of the rational integers, the positive units, and the ring of integers, and
Table 1 lists the associated periodic λ-continued fractions. We get a lower bound on the
number N9 of G9-orbits in P1(K9) of

N9 ≥ 1 + 4 + 4 + 4 = 13.

All of the λ-continued fraction expansions we computed were either finite or preperiodic.

G18-orbits. Let q = 18. We carried out similar searches as in the G7 and G9 cases, for
elements of the form

λn, n ∈ Z ∩ [1, 106]

λλa
1λ

b
2, a, b ∈ Z ∩ [−102, 102]

λ3a+ λ5b, a, b ∈ Z ∩ [−103, 103]

where λ1 = λ2 − 1 and λ2 = λ2 − 2. In this case, we found a much larger number of orbits,
so we only report the associated periodic λ-continued fractions up to negation and reversal
in Table 3. All of the λ-continued fraction expansions we computed were either finite or
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Table 1. q = 7: Counts of elements of Z, O∗
Kq
, and OKq by Gq-orbit

Orbit representative Z ∩ [1, 106]

λa(−λ′)b

a, b ∈ Z ∩ [−102, 102]
a+ bλ2

a, b ∈ Z ∩ [−103, 103]

∞ 999973 28857 3003907

λ2 − 1 0 11446 991616

37
7
λ2 + 29

7
λ− 13

7
0 39 3542

−37
7
λ2 − 29

7
λ+ 13

7
0 39 3542

43
7
λ2 + 32

7
λ− 31

7
0 10 645

−43
7
λ2 − 32

7
λ+ 31

7
0 10 645

26λ2 + 39
2
λ− 31

2
15 0 38

782
7
λ2 + 636

7
λ− 428

7
8 0 28

−782
7
λ2 − 636

7
λ+ 428

7
4 0 28

825
43
λ2 + 689

43
λ− 375

43
0 0 3

−825
43
λ2 − 689

43
λ+ 375

43
0 0 3

529
7
λ2 + 401

7
λ− 313

7
0 0 2

−529
7
λ2 − 401

7
λ+ 313

7
0 0 2

Table 2. q = 9: Counts of elements of Z, O∗
Kq
, and OKq by Gq-orbit

Orbit representative Z ∩ [1, 106]

λa(−λ′)b

a, b ∈ Z ∩ [−102, 102]
a+ bλ2

a, b ∈ Z ∩ [−103, 103]

Cusps 676292 27225 2707373

2λ+ 2 152442 6247 611123

−2λ− 2 152957 6247 611123

8λ+ 8 8816 324 35528

−8λ− 8 8650 324 35528

5
2
λ22 + 9

2
λ+ 3

2
399 16 1604

−5
2
λ22− 9

2
λ− 3

2
412 16 1604

80
57
λ2 − 74

57
λ− 86

19
19 1 59

−80
57
λ2 + 74

57
λ+ 86

19
13 1 59
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preperiodic. Moreover, all of the periodic λ-continued fractions [a1, a2, . . . , an] we found
satisfied the following properties:

• n is divisible by 4
• for 1 ≤ j ≤ n, there is k ≥ 0 such that aj = ±2k

• the number of positive and negative aj’s is equal
•
∏n

j=1 aj = 2n

Note that only finitely many periodic parts of each length satisfy the above properties. We
systematically checked all periodic parts of length 4, 8, and 12 satisfying the above proper-
ties, and listed the periodic parts up to negation and reversal that yield special hyperbolic
fixed points in Table 3.

Gq-orbits for other q. For other values of q, we did some ad hoc searches to find additional
special hyperbolic fixed points, which are reported in Table 1 in terms of periodic λ-continued
fractions. For space reasons, we sometimes use e.g. (−1)9 to denote 9 consecutive occurrences
of −1. Note that several entries in Table 1 previously appeared in [AS] and [HMTY].

For q = 7, 9, 18, our computations provide strong evidence that every element of λQ(λ2) is
fixed by a nontrivial element of Gq. This was previously conjectured in the cases q = 7, 9 in
[Bou] and [HMTY]. For other values of q, it seems more difficult to investigate this question
empirically.

For simplicity, suppose that Kq has class number 1. Then every element of P1(Kq) can be
expressed as [a : b] with a, b ∈ OKq relatively prime. Define a height on P1(Kq) by

h([a : b]) =
∏

σ:Kq ↪→R

(|σ(a)|+ |σ(b)|) (13)

where the product is over the real embeddings of Kq. Note that Kq is totally real. The
function h is well-defined since any other expression for [a : b] ∈ P1(Kq) differs by simulta-
neous multiplication of a, b by a unit u ∈ O∗

Kq
, which satisfies

∏
σ |σ(u)| = 1. For elements

x ∈ λQ(λ2), we will consider the height of x/λ.
Figure 1 illustrates the behavior of log(h) of a “typical” element of λQ(λ2) under the

λ-continued fraction algorithm. The cases q = 7, 9, 18 all behave as in the left image. The
cases q = 14, 30 behave as in the middle image. The remaining cases (where Kq has degree
at least 3) behave as in the right image.
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Table 3. q = 18, periodic λ-continued fractions in λQ(λ2)

[2, 2,−2,−2]

[4, 1,−4,−1]

[4, 2,−1,−2]

[8, 1,−2,−1]

[16, 1,−1,−1]

[4, 2,−2,−1, 4, 1,−2,−2]

[4, 2,−4,−1, 2, 2,−2,−1]

[8, 1,−4,−1, 8,−1,−1, 1]

[8, 2,−8,−1, 1, 2,−1,−1]

[16, 1,−2,−2, 1, 2,−2,−1]

[4, 2, 2,−1,−2, 2,−4,−2, 2, 1,−2,−2]

[4, 2,−2,−2, 2, 1,−4,−1, 2, 2,−2,−2]

[4, 2,−2,−1, 2, 2,−4,−2,−2, 1, 2,−2]

[4, 2,−4,−1, 2, 1,−4,−2, 4,−1,−2, 1]

[4, 2,−4, 1, 2,−1,−4,−2, 4, 1,−2,−1]

[4, 2,−4,−1, 4, 1,−2,−2, 2, 1,−4,−1]

[4, 4,−4, 1, 2,−1,−4,−1, 4, 1,−2,−1]

[4, 4,−4,−1, 2, 1,−4,−1, 4,−1,−2, 1]

[4, 4,−4,−2,−1, 2, 1,−4,−1, 2, 1,−2]

[8, 2,−2,−1, 2, 2,−2,−2,−2, 1, 2,−2]

[8, 2, 2,−1,−2, 2,−2,−2, 2, 1,−2,−2]

[8, 2, 1,−2,−1, 2,−8,−2,−1, 2, 1,−2]

[8, 2,−8,−1,−2, 1, 2,−2,−2, 1, 2,−1]

[8, 2,−4, 1, 1,−2,−2, 2, 1,−1,−4,−2]

[8, 1,−4,−1, 8, 1,−2,−2, 1, 2,−2,−1]

[16, 2,−2,−1, 2, 2,−1,−2,−2, 1, 2,−2]

[16, 2, 2,−1,−2, 2,−1,−2, 2, 1,−2,−2]

[16, 1, 2,−1,−2, 1,−16,−1,−2, 1, 2,−1]

[16, 1,−2,−1, 8,−1,−1, 1, 8, 1,−2,−1]

[16, 1,−4,−2, 1, 2,−2,−1, 8,−1,−1, 1]

[16,−1,−4, 2, 1,−2,−2, 1, 8, 1,−1,−1]

[32, 1, 1,−1,−4, 1,−8,−1,−4, 1, 1,−1]
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Table 4. Periodic λ-continued fractions in λQ(λ2)

q = 7

λ2 − 1 [1,−1]

37
7
λ2 + 29

7
λ− 13

7
[13, 1, 2,−13,−2,−1]

529
7
λ2 + 401

7
λ− 313

7
[169, 1, 2,−1,−2,−1]

531
7
λ2 + 402

7
λ− 319

7
[169, 2, 1,−1,−1,−2]

825
43
λ2 + 689

43
λ− 375

43
[46, 1,−1, 2, 1, 4,−2,−1]

26λ2 + 39
2
λ− 31

2
[58, 1,−1, 1, 2, 2, 1,−1, 1,−58,−1, 1,−1,−2,−2,−1, 1,−1]

782
7
λ2 + 636

7
λ− 428

7
[258,−1, 1, 2,−1,−1, 1,−1, 1, 3, 1, 1,−1

−1,−6, 7,−2,−1,−1,−2,−1,−7, 1]

q = 9

2λ+ 2 [3,−4, 1, 1]

8λ+ 8 [12,−1, 3, 1,−2,−18,−1, 40, 3, 13]

5
2
λ2 + 9

2
λ+ 3

2
[10, 83,−2, (−1)3, 2, 1, 4,−1,−1,−4, 1,−1]

q = 14

λ3 − 3λ [1, 1,−1,−1]

2λ5 − 6tλ3 + 3λ [9,−3,−1,−2,−1,−2,−1,−2,−9, 3, 1, 2, 1, 2, 1, 2]

10λ5 − 32λ3 + 18λ [41, 2,−1,−3, (−1)42, 14,−1]

q = 16

λ3 − 3λ [1, 2, 1, 2,−1,−2,−1,−2]

q = 20

λ5 − 4λ3 + 2λ [2, 13,−2, (−1)3]

2λ3 − 6λ [2, 1,−1,−2, (−1)9, 4, 13, 1, 1,−1,−1,−2,−1, 3,−1,

5, 1, 1, 2, 1,−6, (−1)2, 4, (−1)6, 1, 2, 15,−2, 18]

q = 24

λ5 − 3λ3 + λ [5, 1, 1,−6, (−1)4, 1, 1,−5,−1,−1, 6, 14,−1,−1]

1
2
λ7 − 3λ5 + 11

2
λ3 − 5

2
λ [3,−2,−1, 111,−3, (−1)10, 1]

q = 30

λ7 − 6λ5 + 10λ3 − 4λ [4, 15,−4, (−1)5]

52
29
λ7 − 207

29
λ5 + 243

29
λ3 − 90

29
λ [29,−1,−1,−2, (−1)3, 1,−1,−2,−1, 3, 13, 4, 2,−1, 110,

18, 1,−5, 2,−2, (−1)3, 14 − 1, 1, 3, 15, 4, 1, 1,−19, (−1)8,

−2, 15, 5,−29, 1, 1, 2, 13,−1, 1, 2, 1,−3, (−1)3,−4,−2, 1,

(−1)10,−18,−1, 5,−2, 2, 13, (−1)4, 1,−1,−3, (−1)5,

−4,−1,−1, 19, 18, 2, (−1)5,−5]
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Figure 1. Left: q = 7, a plot of log h(x) for a randomly chosen x ∈ Z+ Zλ2
7

with x ≈ 1030. Middle: q = 14, a plot of log h(x) for x = 32λ3
14. Right: q = 11,

a plot of log h(x) for x = 2.
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