
DYNAMICS OF THE ABSOLUTE PERIOD FOLIATION OF A
STRATUM OF HOLOMORPHIC 1-FORMS

KARL WINSOR

May 15, 2024

Abstract. Let C be a connected component of a stratum of the moduli space of holomor-
phic 1-forms of genus g. We show that the absolute period foliation of C is ergodic on the
area-1 locus, and that the non-dense leaves lie in an explicit countable union of suborbifolds,
subject to a mild constraint. We show similar results for subspaces of C defined by topo-
logical restrictions on the absolute periods. Moreover, we show that for a typical positive
cohomology class in H1(Sg;C), the associated space of isoperiodic forms in C is connected.
Lastly, we show that certain covering constructions provide examples of spaces of isoperiodic
forms with positive dimension and infinitely many connected components.

1. Introduction

Let Mg be the moduli space of closed Riemann surfaces of genus g ≥ 2. Let ΩMg → Mg

be the bundle of pairs (X,ω) with X ∈ Mg and ω a nonzero holomorphic 1-form on X.
The space ΩMg is a union of strata ΩMg(κ) consisting of holomorphic 1-forms whose
zero orders form a given partition κ = (m1, . . . ,mn) of 2g − 2. The stratum ΩMg(κ)
admits a holomorphic absolute period foliation A(κ), whose leaves are navigated by varying
a holomorphic 1-form without changing its integrals along closed loops.

In this paper, we study the dynamics of the absolute period foliation and the topology
of spaces of isoperiodic forms in a stratum. Let C be a connected component of ΩMg(κ).
We show that for a typical (X,ω) ∈ C, the space of holomorphic 1-forms in C isoperiodic to
(X,ω) is connected, with a mild assumption on C. This topological result provides a bridge
from dynamics on homogeneous spaces to dynamics on strata, with strong consequences for
A(κ). In particular, we show that A(κ) is ergodic on the area-1 locus of C, and that the
non-dense leaves in the area-1 locus lie in an explicit countable union of suborbifolds. We
obtain similar results for subspaces of C defined by restricting the absolute periods to a closed
subgroup of the complex numbers C. Our results suggest that a version of Ratner’s theorems
for unipotent flows on homogeneous spaces may hold for the absolute period foliation of a
stratum.

Absolute periods. Let Sg be a closed oriented surface of genus g. The absolute periods of
a cohomology class ϕ ∈ H1(Sg;C) are defined by

Per(ϕ) = {ϕ(c) : c ∈ H1(Sg;Z)} ⊂ C.

A holomorphic 1-form (X,ω) ∈ ΩMg determines a cohomology class [ω] ∈ H1(X;C), and
we define Per(ω) similarly. Equivalently, Per(ω) is the set of integrals of ω along closed loops
on X. For κ = (m1, . . . ,mn) a partition of 2g − 2, we denote |κ| = n. Leaves of A(κ) have
complex dimension |κ| − 1. Two holomorphic 1-forms lie on the same leaf of A(κ) if and
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only if they can be joined by a path in ΩMg(κ) along which the absolute periods are constant.

Main results: dynamics and topology. Let C be a connected component of a stratum
ΩMg(κ), and fix ϕ ∈ H1(Sg;C). The space of isoperiodic forms in C representing ϕ is

C(ϕ) = {(X,ω) ∈ C : ϕ = f ∗[ω] for some f ∈ Homeo+(Sg, X)}.
We say that ϕ is positive if it has positive self-intersection. Note that ϕ is positive whenever
C(ϕ) is nonempty. Two holomorphic 1-forms (X,ω), (Y, η) ∈ C(ϕ) are isoperiodic, meaning
there is a symplectic isomorphism m : H1(X;Z) → H1(Y ;Z) such that

∫
m(c)

η =
∫
c
ω for all

c ∈ H1(X;Z). Our main results show that C(ϕ) is typically connected, and that the only
obstructions to the connectivity of C(ϕ) come from algebraic coincidences among absolute
periods and the topology of C.

We state our main results in Theorems 1.1-1.4 below. In all of these theorems, C is a con-
nected stratum ΩMg(κ) with |κ| > 1, or the nonhyperelliptic component of ΩMg(g−1, g−1)
with g − 1 ≥ 3 odd.

Theorem 1.1. Let ϕ ∈ H1(Sg;C) be a positive cohomology class such that Per(ϕ) ∼= Z2g

and Per(ϕ) ∩ Rz ⊂ Qz for all z ∈ C. Then C(ϕ) is connected.

The hypotheses on Per(ϕ) ensure that the absolute periods do not satisfy any atypical
Q-linear relations, and that there are no atypical pairs of parallel absolute periods.

By [KZ], a stratum ΩMg(κ) is connected if and only if some mj ∈ κ is odd and not equal
to g − 1, or g = 2. In particular, Theorem 1.1 applies to most strata. We exclude the case
|κ| = 1, since in that case leaves of A(κ) are points. The orbifold fundamental group π1(C)
admits a homomorphism π1(C) → Sp(2g,Z) given by the monodromy action on homology.
By [Gut], the stratum components in Theorem 1.1 are precisely the components of strata
ΩMg(κ) with |κ| > 1 for which this monodromy homomorphism is surjective. Theorem
1.1 has strong consequences for the dynamics of A(κ), as follows. Let C1 be the set of
holomorphic 1-forms in C with area 1.

Theorem 1.2. The absolute period foliation of C1 is ergodic. For all (X,ω) ∈ C1 such that
Per(ω) ∼= Z2g and Per(ω) ∩ Rz ⊂ Qz for all z ∈ C, the leaf of the absolute period foliation
of C1 through (X,ω) is dense in C1.

Here, ergodicity means a measurable union of leaves has either zero Lebesgue measure
or full Lebesgue measure. Ergodicity implies that a typical leaf is dense, but does not
provide explicit examples of dense leaves. The density result in Theorem 1.2 shows that the
non-dense leaves in C1 lie in an explicit countable union of suborbifolds.

The closure of a leaf of the absolute period foliation in its stratum is constrained by the
closure of the associated group of absolute periods in C. Fix (X,ω) ∈ ΩMg(κ). If Per(ω) is
closed in C, then Per(ω) ∼= Z2 is a lattice in C and the leaf of A(κ) through (X,ω) is closed in
ΩMg(κ). If Per(ω) is neither closed nor dense, then its closure has the form Λ = M ·(R+iZ)
for some M ∈ SL(2,R). Let Λ0 = M · R be the identity component of Λ. We define CΛ to
be the set of holomorphic 1-forms (X,ω) ∈ C whose absolute periods are contained in Λ and
intersect every component of Λ. Equivalently, Per(ω)+Λ0 = Λ. We define CΛ

1 = CΛ∩C1. Our
next results provide an analogue of Theorems 1.1-1.2 for absolute periods that are dense in
Λ, with similar dynamical consequences for the absolute period foliation of CΛ. We remark
that a priori, it is not even clear that CΛ is connected.
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Theorem 1.3. Let ϕ ∈ H1(Sg;C) be a positive cohomology class such that Per(ϕ) ∼= Z2g is
not dense in C. Then C(ϕ) is connected.

Theorem 1.4. The absolute period foliation of CΛ
1 is ergodic. For all (X,ω) ∈ CΛ

1 such that
Per(ω) ∼= Z2g, the leaf of the absolute period foliation of CΛ

1 through (X,ω) is dense in CΛ
1 .

Theorem 1.2 can be deduced from Theorem 1.1 using the transfer principle from [CDF],
by applying Moore’s ergodicity theorem and Ratner’s orbit closure theorem to the action of
Sp(2g,Z) on Sp(2g,R)/ Sp(2g−2,R) as done in [Kap]. We review this connection in Section
6. Theorem 1.4 can be deduced similarly from Theorem 1.3.

Our proofs are inductive, and the inductive steps apply to all nonhyperelliptic components
of strata ΩMg(κ) with |κ| > 1. To complete the proof of Theorem 1.2 for the remaining
nonhyperelliptic components, we would need to establish one additional base case, namely,
the case of the stratum ΩM3(2, 2).

Disconnected spaces of isoperiodic forms. As a complement to Theorem 1.1, we show
that certain covering constructions yield examples where C(ϕ) is highly disconnected.

Theorem 1.5. Fix g ≥ 4 even, and let C = ΩMg(2g − 3, 1). There is ϕ ∈ H1(Sg;C) such
that C(ϕ) has infinitely many connected components.

The construction in our proof of Theorem 1.5 admits many variations in most stratum
components, and we did not attempt to state this theorem in the greatest possible generality.
A version of Theorem 1.5 was previously known in ΩM2(2), due to the existence of infinitely
many “fake pentagons,” only one of which has an order 5 automorphism [McM4]. In one of
our examples with C = ΩM4(5, 1), each fake pentagon gives rise to a connected component
of C(ϕ) that consists of connected sums of two copies of that fake pentagon. In general, the
phenomenon in Theorem 1.5 arises from closed GL+(2,R)-invariant subsets of strata with
an absolute period foliation that inherits the trivial behavior of the absolute period foliation
of ΩMh(2h− 2) through a covering construction.
Lastly, we show that Theorems 1.1 and 1.3 cannot be extended to any other stratum

components, by showing that in the remaining stratum components, spaces of isoperiodic
forms are typically disconnected. See Section 2 for definitions regarding types of stratum
components. Specifically, we will show that if there is a positive ϕ ∈ H1(Sg;C) such that
Per(ϕ) ∼= Z2g and C(ϕ) is connected, then the monodromy homomorphism π1(C) → Sp(2g,Z)
is surjective. As a byproduct, we recover the surjectivity of these monodromy homomor-
phisms for the stratum components in Theorem 1.1 from [Gut].

Theorem 1.6. Let C be a component of a stratum ΩMg(κ) with |κ| > 1, such that C is
a spin component or a hyperelliptic component. For all positive ϕ ∈ H1(Sg;C) such that
Per(ϕ) ∼= Z2g, C(ϕ) is disconnected.

In fact, we will prove a more general result in Section 6 that applies to all positive
ϕ ∈ H1(Sg;C) such that Per(ϕ) is not discrete.

Open questions. Theorems 1.2 and 1.4 give hope for a complete classification of closures of
leaves of A(κ) in the area-1 locus Ω1Mg(κ). Here, we raise some open questions that suggest
a possible classification, in the spirit of Ratner’s theorems for unipotent flows on homogeneous
spaces [Rat] and Eskin-Mirzakhani-Mohammadi’s theorems for GL+(2,R)-orbit closures in
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strata [EMM]. Let L be the leaf of A(κ) through (X,ω) ∈ Ω1Mg(κ), and let L be its closure
in Ω1Mg(κ).

Question 1.7. Is L always a “nice” subset of Ω1Mg(κ)? For instance, is L a properly
immersed real-analytic suborbifold of Ω1Mg(κ)?

Question 1.8. If Per(ω) is dense in C and L ̸= L, is it the case that L = SL(2,R) · L?

A more general and detailed classification question will be raised in Section 6. Question
1.8 addresses the three known obstructions to the density of L in its connected component
in Ω1Mg(κ). First, Per(ω) might be contained in a proper closed subgroup of C. Since
Per(ω) contains a lattice in C, up to the action of GL+(2,R) the only possible subgroups are
R + iZ and Z + iZ. Second, L might lie in a proper closed SL(2,R)-invariant subset of its
connected component in Ω1Mg(κ). This occurs, for instance, in certain loci of double covers
of quadratic differentials when |κ| = 2. Third, L might be closed and consist of branched
covers of holomorphic 1-forms of lower genus. This occurs in our examples in Theorem 1.5.
An answer to the following question is likely needed for a complete classification of closures
of leaves of A(κ).

Question 1.9. What are the closed SL(2,R)-invariant subsets of Ω1Mg(κ) that are satu-
rated for A(κ)?

Although an understanding of the connected components of C(ϕ) has strong implications
for the dynamics of A(κ), Theorems 1.5 and 1.6 suggest that a complete classification of
connected components of C(ϕ) may be delicate. Here, we formulate a question which may
still have a positive answer. We say that a holomorphic 1-form in C is generic if its GL+(2,R)-
orbit is dense in C. Generic holomorphic 1-forms have no nontrivial automorphisms. Fix
generic (X,ω), (Y, η) ∈ C. Parallel transport along a path γ : [0, 1] → C from (X,ω) to (Y, η)
determines a symplectic isomorphism mγ : H1(X;Z) → H1(Y ;Z). We say that (X,ω) and
(Y, η) are C-isoperiodic if there is a path γ in C from (X,ω) to (Y, η) such that

∫
mγ(c)

η =
∫
c
ω

for all c ∈ H1(X;Z).

Question 1.10. Let C be a component of a stratum ΩMg(κ) with |κ| > 1. Do generic
C-isoperiodic holomorphic 1-forms lie on the same leaf of the absolute period foliation of C?

When the monodromy homomorphism π1(C) → Sp(2g,Z) is not surjective, being C-
isoperiodic is a stronger condition than being isoperiodic, since not all symplectic isomor-
phisms of homology groups arise from paths in C. Indeed, if γ1, γ2 : [0, 1] → C are two paths
from (X,ω) to (Y, η), then the automorphism m−1

γ2
◦ mγ1 of H1(X;Z) must arise from an

element of the image of the above monodromy homomorphism.
In our examples in Theorem 1.5, the space C(ϕ) contains infinitely many connected com-

ponents that each consist of degree 2 branched covers of a single holomorphic 1-form in
ΩMh(2h− 2), where g = 2h. The union of these components is contained in a proper closed
GL+(2,R)-invariant subset of ΩMg(2g − 3, 1). However, C(ϕ) also has least one connected
component containing generic holomorphic 1-forms. We do not know whether there is ex-
actly one such connected component.

Methods. We now outline the proof of Theorem 1.1, which consists of two inductive argu-
ments. The proof of Theorem 1.3 has a similar structure.
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The first inductive argument addresses the case of strata ΩMg(κ) with |κ| = 2, and we
induct on genus. The base case of genus 2 only involves the stratum ΩM2(1, 1), and Theorem
1.1 is already known in this case by Theorem 3.3 in [CDF], building on an observation in
[McM4]. For the inductive step, we construct holomorphic 1-forms of genus g + 1 from
holomorphic 1-forms of genus g by forming connected sums with a torus in the following
way. Choose a flat torus T = (C/(Zz + Zw), dz) and a closed geodesic α ⊂ T . Given
a holomorphic 1-form (X,ω) ∈ ΩMg(m1,m2), we can slit T along α, slit (X,ω) along a
parallel segment α′ of the same length from a zero Z of order m1 to a regular point, and
reglue opposite sides to obtain a new holomorphic 1-form (Y, η) ∈ ΩMg+1(m1 +2,m2). The
connected sum construction is well-defined provided (X,ω) does not have a saddle connection
that is parallel to α and whose length is less than or equal to that of α. A crucial property
of this construction is that the starting surface X is only modified on an embedded segment,
as opposed to a closed loop.

The leaf of A(m1,m2) through (X,ω) can be navigated by moving the other zero Z ′ of
ω relative to Z. Since α′ is an embedded segment in X, one might hope that by moving
Z ′ around X while avoiding α′, one can sweep out essentially the entire leaf of A(m1,m2)
through (X,ω). This is not always possible, which presents a major difficulty in carrying out
our inductive approach. However, in Section 3, we will show that this is typically possible
in the following sense. Let L be the leaf of A(m1,m2) through (X,ω), and let L′ be the
leaf of A(m1 + 2,m2) through (Y, η). In Section 3, we show that if α′ is not parallel to an
absolute period of (X,ω), then the above connected sum construction is well-defined on a
path-connected subset of L whose complement in L is a countable union of line segments.
This is one of the main observations in this paper, and is broadly applicable beyond the
scope of this paper. Applying this observation requires studying when leaves of A(m1,m2)
lift to leaves of the absolute period foliation of a certain finite cover of ΩMg(m1,m2), which
we also do in Section 3.

For simplicity, we will now assume that g+ 1 ≥ 4 and that m1,m2 are odd. Let C ′ be the
component of ΩMg(m1,m2) containing (X,ω), and let C be the component of ΩMg+1(m1+
2,m2) containing (Y, η). The hypotheses on Per(η) allow us to assume that the GL+(2,R)-
orbit of (Y, η) is dense in C, possibly after moving a small distance along the leaf of A(m1 +
2,m2) through (Y, η). This is shown in Section 5 using the explicit density criterion for
GL+(2,R)-orbits in stratum components from [Wri1]. We can then assume that (Y, η) can
be presented as a connected sum with a torus as above, and thanks to our simplifying
assumption, that there are two such presentations for which the associated tori T1, T2 are
disjoint. See Figure 6. This is because such presentations persist on open neighborhoods in
strata and are preserved under the GL+(2,R) action. The hypotheses on Per(η) also ensure
that for each connected sum presentation, the associated slits are not parallel to an absolute
period of the complementary holomorphic 1-form, as shown in Section 5.

Let ϕ ∈ H1(Sg+1;C) be such that (Y, η) ∈ C(ϕ), and suppose Area(Y, η) = 1. Let L1, L2

be the leaves of A(m1,m2) through the complementary holomorphic 1-forms obtained from
Y \T1 and Y \T2, respectively. By applying the inductive hypothesis to Y \T1, we show that
C(ϕ) essentially contains a “copy” of L1 mapped into C by forming connected sums with T1

whenever this is well-defined. This copy is a connected subset of C(ϕ) determined by a pair
of absolute periods (z1, w1) arising from closed loops in T1 that intersect exactly once. The
pair (z1, w1) satisfies an area constraint 0 < Im(z1w1) < 1, and the associated homology
classes in H1(Y ;Z) have algebraic intersection 1. Similarly, C(ϕ) contains a “copy” of L2
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determined by a pair of absolute periods (z2, w2). Moreover, (z1, w1) and (z2, w2) determine
the same connected component of C(ϕ), since their intersection contains (Y, η). In this
way, we get a function from pairs of absolute periods (z1, w1), with 0 < Im(z1w1) < 1
arising from homology classes with algebraic intersection 1, to connected components of
C(ϕ). The construction in Figure 6 can be used to show that two such pairs (z1, w1), (z2, w2),
arising from orthogonal pairs of homology classes and satisfying Im(z1w1) + Im(z2w2) < 1,
determine the same component of C(ϕ). One can then show that any two such pairs (z1, w1),
(z2, w2) with 0 < Im(z1w1) < 1 and 0 < Im(z2w2) < 1 determine the same component of
C(ϕ), by finding a third pair (z3, w3) arising from homology classes orthogonal to those of
(z1, w1), (z2, w2) such that Im(z3w3) > 0 is sufficiently small. This step crucially relies on
the assumption that g ≥ 4 and the assumptions on Per(ϕ). To summarize, we are reducing
the connectivity of C(ϕ) to an algebraic problem in terms of pairs of absolute periods.

Unfortunately, the simplified argument above does not work in genus 3, which presents
another major difficulty since our inductive approach crucially relies on this case. To address
this difficulty, in Section 4 we carry out a more complicated study of how a single holomorphic
1-form in genus at least 3 can be presented as a connected sum with a torus in multiple
ways. This study leads to substantially more difficult algebraic problems, which are solved
in Sections 4 and 6. In general, if Theorem 1.1 holds for a connected component C of
ΩMg(m1,m2), and if C ′ is a connected component of ΩMg+1(m1 + 2,m2) that contains
connected sums of holomorphic 1-forms in C with a torus as above, then Theorem 1.1 also
holds for C ′.

Our second inductive argument addresses the general case, and we induct on |κ|. The
base case |κ| = 2 was discussed above. The inductive step is easier, and we use the surgery
of splitting a zero. Given (X,ω) ∈ ΩMg(κ) with a zero Z of order m ≥ 2, and 1 ≤ j < m,
there is a local surgery which splits Z into a pair of zeros of orders m− j and j, respectively.
This surgery does not change the absolute periods of (X,ω). Let κ′ = (κ \ (m))∪ (m− j, j).
We show that if Theorem 1.1 holds for a connected component C of ΩMg(κ), and if C ′ is a
connected component of ΩMg(κ

′) that contains holomorphic 1-forms arising from splitting
a zero on a holomorphic 1-form in ΩMg(κ), then Theorem 1.1 also holds for C ′. The
stratum components appearing in Theorem 1.1 are precisely those that can be accessed from
ΩM2(1, 1) by iteratively forming a connected sum with a torus and then iteratively splitting
a zero.

Our methods apply more generally to GL+(2,R)-orbit closures with a non-trivial absolute
period foliation and to complex relative period geodesics in strata. We pursue these topics,
along with Questions 1.7-1.10, in forthcoming work.

Notes and references. The particular case of the dynamics of the absolute period foliation
of ΩMg are studied in [CDF], [Ham], and [McM4]. For g = 2 and g = 3, the fact that
any principally polarized abelian variety is the Jacobian of a stable curve is exploited in
[McM4] to prove ergodicity on Ω1Mg, and this idea is pushed further in [CDF] to obtain
a classification of leaf closures. The approach in [CDF] then uses an inductive argument
involving isoperiodic degenerations to the boundary of moduli space, in order to classify leaf
closures and to prove ergodicity on Ω1Mg for all g ≥ 2. An independent and simpler proof
of ergodicity on Ω1Mg for g ≥ 2 is given in [Ham], also using induction and degenerations.
All of these results apply to the principal stratum ΩMg(1, . . . , 1) as well. We remark that
the boundary of moduli space does not play a role in our proofs, and so we obtain a new
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proof of ergodicity on Ω1Mg for g ≥ 3. The methods in [CDF], [Ham], and [McM4] do not
seem to be easily adaptable to non-principal strata, due to our limited understanding of the
Schottky locus and a lack of available base cases for induction.

Less is known about the dynamics of the absolute period foliation of non-principal strata.
In [HW], it is shown that the Arnoux-Yoccoz surfaces of genus g ≥ 3 give examples of
dense leaves in a fixed-area locus in a certain connected component of ΩMg(g − 1, g − 1).
Additional examples of dense leaves in Ω1M3(2, 1, 1) arising from Prym loci are given in
[Ygo1]. In [Win1], it is shown that there exist dense relative period geodesics in the area-1
locus of every stratum component with at least two zeros, and explicit examples of dense
leaves of many complex 1-dimensional subfoliations of the absolute period foliation of these
stratum components are given. In [McM2] and [Ygo2], it is shown that leaves of the absolute
period foliation of eigenform loci in ΩM2(1, 1), and more generally of rank 1 affine invariant
manifolds, are either closed or dense in the area-1 locus. After the first version of this article
was posted, Jon Chaika and Barak Weiss posted a conditional proof that real Rel flows are
ergodic on the area-1 locus of all stratum components with multiple zeros [CW], conditional
on a generalization of the measure rigidity results of [EM]. Their result implies the ergodicity
of the absolute period foliation on the area-1 locus of all stratum components with multiple
zeros. We remark that our proof of the ergodicity part of Theorem 1.2 can be made to
only rely on Moore’s ergodicity theorem [Zim] and the ergodicity of the GL+(2,R)-action on
stratum components [Mas1], [Vee1], [Vee2]. See Remark 6.22. Additionally, the methods in
our paper apply to loci that are not SL(2,R)-invariant, as seen in Theorems 1.3 and 1.4. Our
proof of Theorems 1.1 and the density part of Theorem 1.2 rely on the explicit full measure
sets of dense GL+(2,R)-orbits in strata given in [Wri1], which in turn relies on the rigidity
results for GL+(2,R)-orbit closures in strata in [EMM].

The connected sums we consider are special cases of the surgery of bubbling a handle in
[KZ] and the figure-eight construction in [EMZ]. These surgeries play an important role
in the classification of connected components of strata in [KZ], and in the computation of
Siegel-Veech constants for strata in [EMZ]. Detailed studies of presentations of holomorphic
1-forms in genus 2 as connected sums are carried out in [McM1] and [CM]. In [McM1],
connected sums are used to classify all SL(2,R)-orbit closures and invariant measures in
Ω1M2(1, 1), and in [CM], connected sums are used to exhibit minimal non-uniquely ergodic
straight-line flows on every non-Veech surface in genus 2.

The intrinsic geometry of leaves of the absolute period foliation of ΩMg and of strata are
studied in [BSW], [McM3], [McM4], and [MW]. Completeness results for the natural metric
on leaves are given in these papers. In [McM4], it is shown that the metric completion of
a typical leaf in ΩM2 is a Riemann surface biholomorphic to the upper half-plane. In con-
trast, examples of infinite-genus leaves in certain strata of holomorphic 1-forms with exactly
2 zeros are given in [Win2]. The geometry of leaves in ΩM2 is studied in [EMS] in order to
count periodic billiard trajectories in a square with a barrier, and in [Dur] to make progress
toward classifying square-tiled surfaces in ΩM2(1, 1).

Acknowledgements. The author thanks Curt McMullen for his interest, encouragement,
and extensive feedback on earlier versions of this work. The author thanks Dawei Chen,
Kathryn Lindsey, Tina Torkaman, and Yongquan Zhang for helpful comments and discus-
sions. This material is based upon work supported by the National Science Foundation



8 KARL WINSOR

Graduate Research Fellowship Program under grant DGE-1144152 and by a National Sci-
ence Foundation Mathematical Sciences Postdoctoral Fellowship under grant DMS-2303185.

2. Splitting zeros and connected sums

We recall relevant material on strata of holomorphic 1-forms and the GL+(2,R)-action on
strata. We then discuss the surgeries of splitting zeros and forming a connected sum with a
torus. For our purposes, we will need to treat these surgeries as globally defined operations
on strata, which requires passing to a certain finite cover by marking a prong. We also set
some notation for the rest of the paper. For additional background material, we refer to
[Bai], [Wri3], [Zor].

Holomorphic 1-forms. We denote by (X,ω) a closed Riemann surface X of genus g ≥ 2
equipped with a holomorphic 1-form ω. We always assume ω ̸= 0. The zero set Z(ω) is
finite and nonempty, and the orders of the zeros form a partition of 2g − 2. Integration of
ω on X \ Z(ω) gives an atlas of charts to the complex plane C, whose transition maps are
translations. Geometric structures on C that are invariant under translations can be pulled
back to X \ Z(ω) using this atlas. In particular, the Euclidean metric on C determines a
singular flat metric |ω| on X with a cone point with angle 2π(k + 1) at a zero of order k.

In our figures, we will present holomorphic 1-forms as finite disjoint unions of polygons
in C, possibly with slits, with pairs of edges identified by translations in C. In most cases,
the edge identifications will be implicit from the requirement that identified edges must be
parallel and of the same length.

A saddle connection on (X,ω) is an oriented geodesic segment γ for the metric |ω| with
endpoints in Z(ω) and otherwise disjoint from Z(ω). The holonomy of γ is the nonzero
complex number

∫
γ
ω. A closed geodesic α in X \Z(ω) is contained in a maximal connected

open subset of X \Z(ω) foliated by parallel closed geodesics. Such an open subset C is called
a cylinder. The boundary of C consists of a finite union of parallel saddle connections. Each
homotopy class of paths in X with endpoints in Z(ω) has a unique geodesic representative
of minimal length in the metric |ω|, consisting of finitely many saddle connections such that
each angle formed by two consecutive saddle connections is at least π. Let

Per(ω) =

{∫
c

ω : c ∈ H1(X;Z)
}

be the subgroup of C of absolute periods of ω. Let

Γ(ω) =

{∫
γ

ω : γ is a saddle connection on (X,ω)

}
be the subset of C of holonomies of saddle connections. The subset Γ(ω) is discrete. In
particular, for any B > 0, there are only finitely many saddle connections on (X,ω) of
length at most B. Let C∗ = C \ {0}, and let

∆(ω) = C∗ \ {tz : t ≥ 1, z ∈ Γ(ω)}

be the complement of the rays starting at a saddle connection holonomy and emanating
away from the origin. Since Γ(ω) is discrete, ∆(ω) is open.
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Strata. Let Sg be the connected closed oriented surface of genus g ≥ 2. The Teichmüller
space Tg of marked Riemann surfaces f : Sg → X of genus g is a complex manifold of
dimension 3g − 3. The mapping class group Modg acts properly discontinuously on Tg by
biholomorphisms. The moduli space of Riemann surfaces of genus g is the complex orbifold
Mg = Tg/Modg. The action of Modg on Tg induces an action on the bundle ΩTg → Tg of
nonzero holomorphic 1-forms on marked Riemann surfaces. The moduli space of holomorphic
1-forms of genus g is the complex orbifold ΩMg = ΩTg/Modg. The space ΩTg decomposes
into strata ΩTg(κ) indexed by partitions κ = (m1, . . . ,mn) of 2g − 2. The stratum ΩTg(κ)
consists of holomorphic 1-forms on marked Riemann surfaces with exactly n distinct zeros of
orders m1, . . . ,mn. The action of Modg preserves each stratum, and ΩMg decomposes into
strata ΩMg(κ) = ΩTg(κ)/Modg which are complex suborbifolds of ΩMg. We denote |κ| = n.

Period coordinates. Fix (X0, ω0) ∈ ΩTg(κ). There is a neighborhood U ⊂ ΩTg(κ) of
(X0, ω0), and a natural isomorphism H1(X,Z(ω);C) ∼= H1(X0, Z(ω0);C) for any (X,ω) ∈ U ,
provided by the Gauss-Manin connection on the bundle of relative cohomology groups over
ΩTg(κ). Period coordinates on U are defined using these isomorphisms by

U → H1(X0, Z(ω0);C), (X,ω) 7→ [ω],

and this map is a biholomorphism from an open subset of ΩTg(κ) to an open subset of a
complex vector space of dimension 2g + |κ| − 1. Given a choice of basis c1, . . . , c2g+|κ|−1 for
H1(X0, Z(ω0);Z), we get a map

U 7→ C2g+|κ|−1, (X,ω) 7→

(∫
c1

ω, . . . ,

∫
c2g+|κ|−1

ω

)
.

The components
∫
cj
ω are the period coordinates of (X,ω), and they depend on the choice

of basis for the integral relative homology group. Transition maps between period coordi-
nate charts are integral linear maps that preserve H1(X0, Z(ω0);Z). Period coordinates give
ΩMg(κ) the structure of an affine orbifold.

Area. The area of (X,ω) is the area of X with respect to the metric |ω|, and is given by

Area(X,ω) =
i

2

∫
X

ω ∧ ω =

g∑
j=1

Im

(∫
aj

ω

∫
bj

ω

)
where {aj, bj}gj=1 is any symplectic basis for H1(X;Z). The area of (X,ω) is an invariant of

the absolute cohomology class [ω] ∈ H1(X;C). Let

Ω1Mg(κ) = {(X,ω) ∈ ΩMg(κ) : Area(X,ω) = 1}

be the area-1 locus in ΩMg(κ). The area-1 locus Ω1Mg(κ) is a real-analytic orbifold and
has a canonical Lebesgue measure class.

The GL+(2,R)-action. Let GL+(2,R) be the group of linear automorphisms of R2 with
positive determinant. Let SL(2,R) be the subgroup of matrices with determinant 1. The
standard R-linear action of GL+(2,R) on C = R+Ri induces an action on ΩMg by postcom-
position with an atlas of charts on X\Z(ω) as above. The action of GL+(2,R) preserves each
stratum ΩMg(κ), and the action of SL(2,R) preserves Ω1Mg(κ). The action of SL(2,R)
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is ergodic on each connected component of Ω1Mg(κ) with respect to the Lebesgue mea-
sure class [Mas1], [Vee1], [Vee2], meaning that any measurable SL(2,R)-invariant subset of
Ω1Mg(κ) has either zero measure or full measure.

Connected components of strata. Most strata in ΩMg are connected. However, strata
can have up to 3 connected components, which are classified by hyperellipticity and the
parity of a spin structure. We recall their classification from [KZ], and we refer to [KZ] and
the references therein for further details.

Let κ = (m1, . . . ,mn) be a partition of 2g− 2 with all mj even, and fix (X,ω) ∈ ΩMg(κ).
The index of a smooth oriented closed loop γ ⊂ X\Z(ω) is the degree of the associated Gauss
map γ → S1, that is, 1/2π times the total change in angle of a tangent vector travelling once
around γ. We denote the index of γ by ind(γ). Let {αj, βj}gj=1 be a collection of smooth
oriented closed loops in X \ Z(ω) representing a symplectic basis for H1(X;Z). The parity
of the spin structure ϕ(ω) is defined by

ϕ(ω) =

g∑
j=1

(ind(αj) + 1)(ind(βj) + 1) mod 2.

It is a fact that ϕ(ω) is independent of the choice of symplectic basis of H1(X;Z) and
the choice of representatives for the symplectic basis. Moreover, ϕ(ω) is an invariant of
the connected component of (X,ω) in ΩMg(κ). Components of ΩMg(κ) are called spin
components. A component C ⊂ ΩMg(κ) is even or odd according to whether ϕ(ω) = 0 or
ϕ(ω) = 1 for (X,ω) ∈ C.

If C ⊂ ΩMg(2g − 2) consists of holomorphic 1-forms on hyperelliptic curves, or if C ⊂
ΩMg(g − 1, g − 1) consists of holomorphic 1-forms on hyperelliptic curves whose hyperel-
liptic involution exchanges the two zeros, then C is hyperelliptic. A component which is not
hyperelliptic is nonhyperelliptic.

Theorem 2.1. ([KZ], Theorems 1-2 and Corollary 5) For g ≥ 4, the connected components
of ΩMg(κ) are as follows.

(1) If κ = (2g − 2) or κ = (g − 1, g − 1), then ΩMg(κ) has a unique hyperelliptic
component.

(2) If all mj ∈ κ are even, then ΩMg(κ) has exactly two nonhyperelliptic components:
one even component and one odd component.

(3) If some mj ∈ κ is odd, then ΩMg(κ) has a unique nonhyperelliptic component.

For 2 ≤ g ≤ 3, the stratum ΩMg(κ) is connected unless κ = (4) or κ = (2, 2), in which case
ΩMg(κ) has exactly two connected components: one odd component, and one hyperelliptic
component which is also an even component.

Corollary 2.2. A stratum ΩMg(κ) is connected if and only if there is mj ∈ κ that is odd
and not equal to g − 1, or g = 2.

Finite covers of strata. Let κ be a partition of 2g − 2, and choose m ∈ κ. We will need
to work with a finite cover of a stratum

p : Ω̃Mg(κ;m) → ΩMg(κ) (1)

consisting of holomorphic 1-forms in ΩMg(κ) equipped with a distinguished rightward hor-

izontal direction at a zero Z of order m. We denote elements of Ω̃Mg(κ;m) by (X, ω̃). We



DYNAMICS OF THE ABSOLUTE PERIOD FOLIATION OF A STRATUM 11

denote the distinguished direction by θ(ω̃), and we refer to θ(ω̃) as a prong. The degree of p
is (m+1)Nm, where Nm is the number of times m appears in κ. An automorphism of (X, ω̃)
is required to fix the distinguished zero Z and the prong θ(ω̃), so (X, ω̃) has no nontrivial
automorphisms.

Compactness. A subset K ⊂ ΩMg(κ) is compact if and only if K is closed and there exists
ε > 0 such that every saddle connection on every holomorphic 1-form in K has length at

least ε. The analogous statement holds for Ω̃Mg(κ;m).

Let U ⊂ Ω̃Mg(κ;m) be a contractible open subset whose closure is compact. Recall

that elements of Ω̃Mg(κ;m) have no nontrivial automorphisms. Fix (X, ω̃) ∈ U . For each
homotopy class γ of paths on (X, ω̃) with endpoints in Z(ω), there is a well-defined continuous
length function

ℓγ : U → R>0

whose value at (Y, η̃) ∈ U is the length of the geodesic representative of the corresponding
homotopy class of paths on (Y, η̃). The geodesic representative of γ on (X, ω̃) is a finite
union of saddle connections γ1, . . . , γj on (X, ω̃) where the angles between consecutive saddle
connections γk, γk+1 are all at least π. Saddle connections persist on open neighborhoods
in strata, so let U1 ⊂ U be a neighborhood of (X, ω̃) on which γ1, . . . , γj all persist. The
angles between these consecutive saddle connections vary continuously on U1. If all of these
angles are strictly greater than π, then the geodesic representative of γ remains the union
of γ1, . . . , γj on all holomorphic 1-forms in a neighborhood U2 ⊂ U1 of (X, ω̃). If some of
these angles are equal to π, then in the geodesic representative of γ on nearby holomorphic
1-forms, some sequences of consecutive saddle connections γj1 , γj1+1, . . . , γj2 may be replaced
by a single saddle connection γ′

j1
. Here, γ′

j1
is homotopic to the union γj1 ∪ · · · ∪ γj2 , and the

length of γ′
j1

remains close to the sum of the lengths of γj1 , . . . , γj2 .
For any B > 0, since there are only finitely many saddle connections on (X, ω̃) with length

at most B, there are only finitely many homotopy classes γ such that ℓγ(X, ω̃) ≤ B. We will
need the following strengthening of this observation.

Lemma 2.3. For any B > 0, there are only finitely many homotopy classes γ as above such
that infU ℓγ < B.

Proof. Since the closure of U is compact, there is 0 < ε < B such that every saddle connection
on every holomorphic 1-form in U has length at least ε. For all (X, ω̃) ∈ U , there is an open
neighborhood V ⊂ U of (X, ω̃) such that for all (Y, η̃) ∈ V , every saddle connection γ′ on
(X, ω̃) of length at most B persists as a saddle connection on (Y, η̃) and satisfies

|ℓγ′(X, ω̃)− ℓγ′(Y, η̃)| < ε

2
.

If γ is a homotopy class such that ℓγ(X, ω̃) < B, then on (X, ω̃), the geodesic representative
of γ is a finite union of saddle connections γ1, . . . , γj whose lengths lie in the interval [ε, B].
For each γk, and for any (Y, η̃) ∈ V , we have

sup
V

ℓγk < ℓγk(Y, η̃) + ε ≤ 2ℓγk(Y, η̃).

Therefore, since infV ℓγ < B, we have supV ℓγ ≤ 2 infV ℓγ < 2B.
Now let γ be any homotopy class such that infU ℓγ < B. Since the closure of U is compact,

there is a finite covering U =
⋃N

k=1 Vk by open neighborhoods as above. For each 1 ≤ k ≤ N ,
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fix (Xk, ω̃k) ∈ Vk. Since infVk
ℓγ < B for some 1 ≤ k ≤ N , we have ℓγ(Xk, ω̃k) < 2B for

some 1 ≤ k ≤ N , and thus there are only finitely many possibilities for γ. □

Fix z ∈ C∗, let I = {tz : 0 ≤ t ≤ 1}, and let ΩMg(κ; I) be the set of holomorphic 1-forms
in ΩMg(κ) with a saddle connection whose holonomy is in I.

Lemma 2.4. The subset ΩMg(κ; I) ⊂ ΩMg(κ) is closed.

Proof. Choose m ∈ κ, and let p : Ω̃Mg(κ;m) → ΩMg(κ) be the stratum cover by prong-
marked holomorphic 1-forms from (1). Fix (X,ω) ∈ ΩMg(κ) such that (X,ω) /∈ ΩMg(κ; I),

and fix (X, ω̃) ∈ p−1(X,ω). By Lemma 2.3, there is an open neighborhood U ⊂ Ω̃Mg(κ;m)
of (X, ω̃) such that there are only finitely many homotopy classes γ1, . . . , γj of paths on X
with endpoints in Z(ω) satisfying infU ℓγk ≤ |z|.

Fix 1 ≤ k ≤ j. If ℓγk(X, ω̃) > |z|, then there is a small open neighborhood Uk ⊂ U of
(X, ω̃) such that infUk

ℓγk(X, ω̃) > |z|. If ℓγk(X, ω̃) ≤ |z|, then the geodesic representative
of γk on (X, ω̃) must be a union of saddle connections δ1, . . . , δr that are not parallel to
z, meaning

∫
δs
ω /∈ Rz for 1 ≤ s ≤ r. If the saddle connections δs are pairwise non-

parallel, then there is a small open neighborhood Uk ⊂ U of (X, ω̃) in which the geodesic
representative of γk remains the union of δ1, . . . , δr, and these saddle connections remain
pairwise non-parallel and also not parallel to z. Lastly, suppose some of the δs are parallel.
On nearby holomorphic 1-forms (Y, η̃), for 1 ≤ s ≤ r, the geodesic representative of γk either
contains δs or contains a new saddle connection δ′r1 homotopic to a union of consecutive
saddle connections δr1 , . . . , δr2 with r1 ≤ s ≤ r2. On (Y, η̃), the holonomies of these saddle
connections satisfy

∫
δ′r1

η =
∫
δr1

η+ · · ·+
∫
δr2

η, and the saddle connections δr1 , . . . , δr2 remain

nearly parallel. Then on (Y, η̃), the length of δ′r1 is close to the sum of the lengths of
δr1 , . . . , δr2 , and δ′r1 is also nearly parallel to these saddle connections. Thus, there is a small
open neighborhood Uk ⊂ U of (X, ω̃) in which the geodesic representative of γk is a union of
saddle connections that are not parallel to z.
Let V =

⋂j
k=1 Uk. By definition, for all (Y, η̃) ∈ V , and for all homotopy classes of paths

γ on Y with endpoints in Z(η), either ℓγ(Y, η̃) > |z| or γ contains a saddle connection δ
with

∫
δ
η /∈ I. In particular, (Y, η̃) does not have any saddle connections with holonomy in

I. Thus, since p is an open map, the image p(V) is an open neighborhood of (X,ω) that is
disjoint from ΩMg(κ; I). □

Domains of surgeries. Below, we will discuss two well-known surgeries that involve slitting
and regluing geodesic segments emanating from a zero of a holomorphic 1-form (Y, η). If Z
is a zero of η and s is a segment emanating from Z, then the holonomy

∫
s
η ∈ C∗ does not

uniquely determine s. Rather, the geodesic segments emanating from Z are parameterized
by an open subset of a finite cover of C∗. Let

σ : C̃∗ → C∗

be the universal covering group of C∗. We have polar coordinates C∗ ∼= R>0 × R/2πZ and

C̃∗ ∼= R>0 ×R in which the identity elements correspond to (1, 0). In polar coordinates, σ is
given by reduction mod 2π in the angular coordinate. The fundamental group of GL+(2,R)
is isomorphic to Z and generated by the rotation subgroup SO(2,R). Let

ζ : G̃L
+
(2,R) → GL+(2,R)
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be the universal covering group of ζ. The action of GL+(2,R) on C∗ determines a continuous

action of G̃L
+
(2,R) on C̃∗ that is equivariant in the sense that forM ∈ G̃L

+
(2,R) and z ∈ C̃∗,

we have σ(Mz) = ζ(M)σ(z). The kernel of ζ is generated by an element R that acts on C̃∗

by rotating counterclockwise by 2π.

Now fix (X, ω̃) ∈ Ω̃Mg(κ;m). There is a degree m + 1 connected covering of topological

groups C̃∗
m+1 → C∗ which is unique up to isomorphism. Let

∆(ω̃) → ∆(ω)

be the degree m + 1 covering consisting of oriented geodesic segments γ starting at the
distinguished zero Z ∈ Z(ω) such that

∫
γ
ω ∈ ∆(ω). The choice of prong determines a

natural inclusion ∆(ω̃) ↪→ C̃∗
m+1 by sending segments along the direction of the prong θ(ω̃)

into R>0 × {0} in polar coordinates, and requiring that the image of γ ∈ ∆(ω̃) projects

to
∫
γ
ω ∈ ∆(ω). The action of GL+(2,R) determines a continuous action of G̃L

+
(2,R) on

Ω̃Mg(κ;m) that is equivariant in the sense that forM ∈ G̃L
+
(2,R) and (Y, η̃) ∈ Ω̃Mg(κ;m),

we have p(M(Y, η̃)) = ζ(M)(Y, η). The element R acts on Ω̃Mg(κ;m) by rotating the chosen
prong clockwise by 2π.

Let H = {z ∈ C : Im(z) > 0}, and define S(ω̃) ⊂ ∆(ω̃) × C∗ to be the subset of pairs

(γ, w) such that w/
∫
γ
ω ∈ H. We similarly have a natural inclusion S(ω̃) ↪→ C̃∗

m+1×C∗. Let

S(κ;m) → Ω̃Mg(κ;m)

be the bundle of holomorphic 1-forms equipped with an oriented geodesic segment in ∆(ω̃).

Elements of S(κ;m) are denoted (X, ω̃, γ), where (X, ω̃) ∈ Ω̃Mg(κ;m) and γ ∈ ∆(ω̃). Let

T (κ;m) → Ω̃Mg(κ;m)

be the bundle of holomorphic 1-forms equipped with a pair in S(ω̃). Elements of T (κ;m)

are denoted (X, ω̃, T ), where (X, ω̃) ∈ Ω̃Mg(κ;m) and T ∈ S(ω̃). The actions of G̃L
+
(2,R)

on Ω̃Mg(κ;m) and C̃∗ induce actions on S(κ;m) and T (κ;m).

We will implicitly regard elements of ∆(ω̃) and S(ω̃) as elements of C̃∗
m+1 and C̃∗

m+1×C∗,

respectively, using the inclusions above. We then obtain G̃L
+
(2,R)-equivariant inclusions

S(κ;m) ↪→ Ω̃Mg(κ;m)× C̃∗
m+1

and
T (κ;m) ↪→ Ω̃Mg(κ;m)× C̃∗

m+1 × C∗

that respect the projections to Ω̃Mg(κ;m).

Splitting a zero. Suppose m ≥ 1, and fix 1 ≤ j ≤ m. Given (X, ω̃, γ) ∈ S(κ;m), let
I = [0,

∫
γ
ω] be the oriented segment in C from 0 to

∫
γ
ω, and let

γ1, . . . , γj+1 : I → X

be the isometric embeddings that preserve the direction of I, such that for 1 ≤ k ≤ j + 1,
γk(0) is the distinguished zero Z and the counterclockwise angle around Z from γ to γk(I)
is 2π(k − 1). In particular, γ1(I) = γ. Since

∫
γk(I)

ω ∈ ∆(ω), the segments γk(I) are

disjoint from Z(ω) and from each other except at their common starting point. Slit X
along γ1(I) ∪ · · · ∪ γj+1(I) to obtain a surface with boundary X0, and let γ+

k : I → X0
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Figure 1. A holomorphic 1-form in ΩM2(1, 1) (right) that arises from a
holomorphic 1-form in ΩM2(2) (left) by splitting a zero. The two segments
being slit are shown in bold.

and γ−
k : I → X0 be the left and right edges of the slit coming from γk, respectively. Glue

γ+
k (z) to γ−

k+1(z) for 1 ≤ k ≤ j, and glue γ+
j+1(z) to γ−

1 (z). The complex structure and the
holomorphic 1-form on the interior of X0 extend over the slits to give a holomorphic 1-form
(X ′, ω′). If j < m, then |Z(ω′)| = |Z(ω)| + 1 and the distinguished zero Z is split into two
zeros joined by a single saddle connection γ′ such that∫

γ′
ω′ =

∫
γ

ω.

The order of ω′ at the starting point of γ′ is m− j, and the order of ω′ at the ending point
of γ′ is j. Let κ′ be the partition of 2g − 2 given by the orders of the zeros of ω′. If j < m,
then

κ′ = (κ \ (m)) ∪ (m− j, j),

and if j = m, then κ′ = κ. Then κ′ is the partition of 2g− 2 given by the orders of the zeros
of ω′. We regard (X ′, ω′) as an element of ΩMg(κ

′), and we say that (X ′, ω′) arises from
(X,ω) by splitting a zero. See Figure 1 for an example. The above surgery defines a zero
splitting map

Φ = Φ(κ;m, j) : S(κ;m) → ΩMg(κ
′)

that is a local covering of orbifolds and is equivariant for the actions of G̃L
+
(2,R) and

GL+(2,R). In suitable local period coordinates on Ω̃Mg(κ;m) and ΩMg(κ
′), the map Φ

can be viewed as a map defined on an open subset of C2g+|κ|−1 × C that concatenates the
two inputs. The zero splitting map preserves the area of the underlying holomorphic 1-form.

Connected sums with a torus. Given (X, ω̃, T ) ∈ T (κ;m) with T = (γ, w), let I =
[0,
∫
γ
ω] be the oriented segment in C from 0 to

∫
γ
ω. The pair (γ, w) determines a flat torus

T0 = (C/(Z
∫
γ

ω + Zw), dz).
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Figure 2. A holomorphic 1-form (X,ω) ∈ ΩM3(3, 1) arising from a holo-
morphic 1-form in ΩM2(1, 1) by a connected sum with a torus. The pair of
rightward homologous saddle connections α± is a splitting of (X,ω).

Let γ1 : I → X be the isometric embedding that preserves the direction of I and satisfies
γ1(I) = γ. Let γ2 : I → T0 be the projection of I, which gives a closed geodesic in T0. Slit X
along γ1(I) to obtain a surface with boundary X0, and let γ+

1 : I → X0 and γ−
1 : I → X0 be

the left and right edges of the slit coming from γ1, respectively. Slit T0 along γ2(I) to obtain
a cylinder with boundary C0, and let γ+

2 : I → C0 and γ−
2 : I → C0 be the left and right

edges of the slit coming from γ2, respectively. Glue γ+
1 (z) to γ−

2 (z), and glue γ+
2 (z) to γ−

1 (z).
The result is a holomorphic 1-form (X ′, ω′) with a pair of homologous saddle connections γ±

forming a figure-eight on X ′ and arising from γ±
1 (I) ⊂ X0. The order of ω′ at the zero Z ′

arising from the distinguished zero Z is m+ 2. The counterclockwise angle around Z ′ from
the end of γ− to the end of γ+ is 2π. Let

κ′ = (κ \ (m)) ∪ (m+ 2)

be the partition of 2g given by the orders of the zeros of ω′. We regard (X ′, ω′) as an element
of ΩMg+1(κ

′), and we say that (X ′, ω′) arises from (X,ω) by a connected sum with a torus.
A pair of homologous saddle connections that presents (X ′, ω′) as a connected sum with a
torus is a splitting of (X ′, ω′). See Figure 2 for an example. The above surgery defines a
connected sum map

Ψ = Ψ(κ;m) : T (κ;m) → ΩMg+1(κ
′)

that is a local covering of orbifolds and is equivariant for the actions of G̃L
+
(2,R) and

GL+(2,R). Again, in suitable local period coordinates, Ψ can be viewed as a map defined
on an open subset of C2g+|κ|−1 × C2 that concatenates the two inputs. A connected sum of
a holomorphic 1-form of area A1 > 0 with a flat torus of area A2 > 0 has area A1 + A2.
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Surgeries and stratum components. For our inductive arguments, we will need to un-
derstand the relationship between the stratum components containing (X ′, ω′) and (X,ω),
respectively, when (X ′, ω′) arises from (X,ω) by splitting a zero or by a connected sum with
a torus. We refer to [EMZ] and [KZ] for more general results.

Lemma 2.5. Let ΩMg(κ
′) be a connected stratum with |κ′| ≥ 3. There is a connected

stratum ΩMg(κ) with |κ| = |κ′| − 1 such that ΩMg(κ
′) contains holomorphic 1-forms that

arise from holomorphic 1-forms in ΩMg(κ) by splitting a zero.

Proof. Note that g ≥ 3 since |κ′| ≥ 3. By Corollary 2.2, there is m′ ∈ κ′ such that m′

is odd and not equal to g − 1. Choose m1,m2 ∈ κ′ \ (m′), let m = m1 + m2, and let
κ = (κ′ \ (m1,m2))∪ (m). We have |κ| = |κ′|− 1, and ΩMg(κ) is connected by Corollary 2.2
since m′ ∈ κ. By splitting a zero of order m into two zeros of orders m1 and m2, respectively,
we obtain holomorphic 1-forms in ΩMg(κ

′) that arise from holomorphic 1-forms in ΩMg(κ)
by splitting a zero. □

Lemma 2.6. If C ′ is an even (respectively, odd) component of ΩMg(κ
′) where |κ′| ≥ 3, then

there is an even (respectively, odd) component C of a stratum ΩMg(κ) with |κ| = |κ′|−1 such
that C ′ contains holomorphic 1-forms that arise from holomorphic 1-forms in C by splitting
a zero.

Proof. By Theorem 2.1, since |κ′| ≥ 3, the parts of κ′ are even and ΩMg(κ
′) has a unique

even component and a unique odd component. Choose m1,m2 ∈ κ′, let m = m1 +m2, and
let κ = (κ′ \ (m1,m2))∪ (m). We have |κ| = |κ′| − 1, and by Theorem 2.1, since the parts of
κ are even, ΩMg(κ) contains an even component and an odd component. Splitting a zero is
a local surgery that only modifies a holomorphic 1-form (X,ω) ∈ ΩMg(κ) in a contractible
neighborhood of a zero, so the parity of the spin structure ϕ(ω) is preserved. Let C be an
even or odd component of ΩMg(κ), according to whether C ′ is an even or odd component of
ΩMg(κ

′). By splitting a zero of order m into two zeros of orders m1 and m2, respectively,
we obtain holomorphic 1-forms in C ′ that arise from holomorphic 1-forms in C by splitting a
zero. □

A holomorphic 1-form that has a splitting cannot lie in the hyperelliptic component C of
ΩMg(g − 1, g − 1). For (X,ω) ∈ C, the hyperelliptic involution exchanges the two zeros of
ω. Moreover, as shown in Lemma 2.1 in [Lin], since we can increase the height of a cylinder
on (X,ω) arbitrarily while remaining in the same stratum component, the hyperelliptic
involution preserves every cylinder on (X,ω). Therefore, every cylinder contains both zeros
of ω in its boundary. A cylinder arising from a splitting of (X,ω) would be bounded by a
pair of saddle connections that form a figure-eight at a zero of ω, so such cylinders do not
occur in (X,ω).

Lemma 2.7. Let ΩMg+1(κ
′) be a stratum with g + 1 ≥ 3 such that |κ′| = 2 and the

elements of κ′ are odd. There is a connected stratum ΩMg(κ) with |κ| = 2 such that
the nonhyperelliptic component of ΩMg+1(κ

′) contains holomorphic 1-forms that arise from
holomorphic 1-forms in ΩMg(κ) by a connected sum with a torus.

Proof. By Theorem 2.1, since the elements of κ′ are odd, ΩMg+1(κ
′) has a unique nonhy-

perelliptic component. If g+1 ≥ 4, then there is m′ ∈ κ′ such that m′ ≥ 3 and such that the
elements of κ = (κ′ \ (m′))∪ (m′ − 2) are odd and distinct. If g+1 = 3, then κ′ = (3, 1) and
we let m′ = 3 and κ = (1, 1). In either case, ΩMg(κ) is connected by Corollary 2.2, and by
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applying the connected sum construction at a zero of order m′ − 2, we obtain holomorphic
1-forms in ΩMg+1(κ

′) that arise from holomorphic 1-forms in ΩMg(κ) by a connected sum
with a torus. □

Lemma 2.8. Let ΩMg+1(κ
′) be a stratum with g+1 ≥ 4 such that |κ′| = 2 and the elements

of κ′ are even. If g + 1 ≥ 5, then there is a stratum ΩMg(κ) with |κ| = 2 such that the
even (respectively, odd) nonhyperelliptic component C ′ of ΩMg+1(κ

′) contains holomorphic
1-forms that arise from holomorphic 1-forms in the even (respectively, odd) nonhyperelliptic
component C of ΩMg(κ) by a connected sum with a torus. If g+1 = 4, then the same holds
except that C is hyperelliptic in the even case.

Proof. Since g + 1 ≥ 4, there is m′ ∈ κ′ such that m′ ≥ 4. Let κ = (κ′ \ (m′)) ∪ (m′ −
2). By Theorem 2.1, ΩMg(κ) has an even nonhyperelliptic connected component and an
odd nonhyperelliptic component, unless g + 1 = 4 in which case the even component is
hyperelliptic. By Lemma 11 in [KZ], applying the connected sum construction at a zero
of order m′ − 2 does not change the parity of the associated spin structure. Therefore, C ′

contains holomorphic 1-forms that arise from holomorphic 1-forms in ΩMg(κ) with the same
spin parity by a connected sum with a torus. □

Surgeries and constrained absolute periods. Lastly, we will need to use zero splitting
maps and connected sum maps in settings where the absolute periods are restricted to lie in
certain closed subgroups of C. Let Λ be a proper closed subgroup of C that is not discrete
and that contains a lattice in C. There is M ∈ SL(2,R) such that Λ = M · (R+ iZ). Let Λ0

be the identity component of Λ, so Λ0 = M · R. Define
ΩΛMg(κ) = {(X,ω) ∈ ΩMg(κ) : Per(ω) + Λ0 = Λ}.

A holomorphic 1-form (X,ω) ∈ ΩMg(κ) lies in ΩΛMg(κ) if and only if Per(ω) ⊂ Λ and
Per(ω) intersects every connected component of Λ. We denote by ΩΛ

1Mg(κ) the area-1 locus
in ΩMg(κ). For C a connected component of ΩMg(κ), we similarly define CΛ and CΛ

1 . The
preimage in S(κ;m) of ΩΛMg(κ

′) under the zero splitting map is given by

SΛ(κ;m) = {(X, ω̃, γ) ∈ S(κ;m) : Per(ω) + Λ0 = Λ}.
The preimage in T (κ;m) of ΩΛMg(κ

′) under the connected sum map is slightly more com-
plicated, since we are adding new absolute periods in the process of forming a connected
sum with a torus, and is given by

T Λ(κ;m) = {(X, ω̃, (γ, w)) ∈ T (κ;m) : Per(ω) + Λ0 + Z
∫
γ

ω + Zw = Λ}.

For (X, ω̃, (γ, w)) ∈ T Λ(κ;m), we have Per(ω) + Λ0 = n1Λ and Λ0 + Z
∫
γ
ω + Zw = n2Λ for

some n1, n2 ∈ Z>0 with gcd(n1, n2) = 1.

3. The absolute period foliation and surgeries

We review the absolute period foliation of a stratum of holomorphic 1-forms. We then
study how leaves of these foliations behave under passing to the finite covers of strata from
Section 2, and we study the behavior of leaves when applying the surgeries from Section 2.
In the literature, the absolute period foliation is also referred to as the isoperiodic foliation,
the Rel foliation, and the kernel foliation. For related discussions and further background,
we refer to [BSW], [CDF], [McM3], [McM4], [Zor].
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The period map. For X ∈ Mg, a marking of H1(X;C) is a symplectic isomorphism
m : H1(Sg;C) → H1(X;C) that sends H1(Sg;Z) to H1(X;Z). Let Sg → Mg be the Torelli
cover of moduli space, whose points are closed Riemann surfaces equipped with a marking of
their cohomology. Let ΩSg → Sg be the associated bundle of nonzero holomorphic 1-forms.
The space ΩSg decomposes into strata ΩSg(κ) indexed by partitions κ = (m1, . . . ,mn) of
2g − 2. The period map

Perg : ΩSg → H1(Sg;C), (X,ω,m) 7→ m−1([ω])

sends a holomorphic 1-form to the associated cohomology class on Sg. The period map is
a holomorphic submersion, and the connected components of nonempty fibers of Perg are
leaves of a holomorphic foliation of ΩSg. This foliation descends to a holomorphic foliation
A of ΩMg, called the absolute period foliation of ΩMg. The restriction of Perg to a stratum
ΩSg(κ) is also a holomorphic submersion, and we similarly obtain a holomorphic foliation
A(κ) of ΩMg(κ), called the absolute period foliation of ΩMg(κ). Leaves of A(κ) are im-
mersed complex suborbifolds of dimension |κ| − 1.

Geometry of leaves. Let ΩMg(κ) be a stratum with |κ| > 1. Fix (X0, ω0) ∈ ΩMg(κ),
and let L be the leaf of A(κ) through (X0, ω0). We will sometimes denote this leaf by L(ω0).
Let v = (1, . . . , 1) ∈ C|κ|, let X = C|κ|/Cv, and let G = (C|κ|/Cv) ⋊ Sym(|κ|), where the
symmetric group Sym(|κ|) acts on vectors by permuting their components. Choose an open
disk U ⊂ L containing (X0, ω0), a labelling Z1, . . . , Z|κ| of Z(ω), a point x ∈ X0, and paths
γj from x to Zj. The relative period map

ρ : U → X, (X,ω) 7→

(∫
γ1

ω, . . . ,

∫
γ|κ|

ω

)
(2)

provides local coordinates on U . The map ρ is independent of the choice of x, in the sense
that choosing a path γ0 from x′ to x and replacing each γj with γ0 ∪ γj does not change
ρ. Different choices of labellings and paths may permute the components of ρ and may
translate the components of ρ by absolute periods, which are constant on L. Thus, L has
a (G,X)-structure, and in particular a canonical locally Euclidean metric. In general, this
metric is incomplete, since the holonomy of a saddle connection with distinct endpoints
may approach 0 along a path in L of finite length. For all M ∈ GL+(2,R), the action of
GL+(2,R) on ΩMg(κ) induces a homeomorphism L → M · L to another leaf of A(κ), and
this homeomorphism is affine in the coordinates provided by relative period maps.

Finite covers and surgeries. Choose m ∈ κ, and let p : Ω̃Mg(κ;m) → ΩMg(κ) be the
stratum cover by prong-marked holomorphic 1-forms from (1). The foliation A(κ) lifts to

a foliation A(κ;m) of Ω̃Mg(κ;m), the absolute period foliation of Ω̃Mg(κ;m). The action

of G̃L
+
(2,R) on Ω̃Mg(κ;m) induces affine homeomorphisms between leaves of A(κ;m). We

will sometimes denote the leaf of A(κ;m) through (X, ω̃) by L(ω̃).
Next, the foliation A(κ;m) lifts to a foliation FS of S(κ;m). The leaf of FS through

(X, ω̃, γ) consists of the elements of S(κ;m) that can be reached from (X, ω̃, γ) by a path in
S(κ;m) along which the absolute periods are constant. The segment γ may vary along the
leaf. The foliation A(κ;m) also lifts to a foliation FT of T (κ;m). The leaf of FT through
(X, ω̃, T ) consists of the elements of T (κ;m) that can be reached from (X, ω̃, T ) by a path
in T (κ;m) along which the absolute periods and T are constant.
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Recall that our goal is to analyze the foliations A(κ) inductively, by using the surgeries
from Section 2 to map a leaf L of A(κ) into a leaf L′ of A(κ′). More precisely, we first lift

L to Ω̃Mg(κ;m) by taking its preimage L1 = p−1(L). In the case of splitting a zero, we

consider the preimage L2 of L1 under the projection S(κ;m) → Ω̃Mg(κ;m), and then use a
zero splitting map to map L2 to a subset L3 of a new stratum ΩMg(κ

′) with |κ′| = |κ|+ 1.

In the case of forming a connected sum with a torus, we fix (γ, w) ∈ C̃∗
m+1×C∗ and take the

preimage L2 of L1 in T (κ;m)∩
(
Ω̃Mg(κ;m)× {(γ, w)}

)
under the projection to Ω̃Mg(κ;m),

and then use a connected sum map to map L2 to a subset L3 of a new stratum ΩMg+1(κ
′)

with |κ′| = |κ|. Our hope is that L3 is contained in a leaf of A(κ′). However, there are two
difficulties in pursuing this approach, and the purpose of the rest of this section is to address
these difficulties. First, we need to show that L1 is a single leaf of A(κ;m), as opposed to a
disjoint union of leaves. We will show this is typically the case by showing that it holds for
a dense open GL+(2,R)-invariant set of leaves in ΩMg(κ), using small loops around points
in the metric completion of a leaf of A(κ;m) and some numerology. Second, in the case of
connected sums with a torus, L2 might not be a single leaf of FT . When passing from L1 to
L2, we remove some of the holomorphic 1-forms in L1 with a saddle connection parallel to
γ, and this can result in L2 being highly disconnected. This issue appears to be much more
subtle and is the main reason for the assumptions imposed on the absolute periods in our
main theorems.

Lifting leaves to finite covers. We first address the question of when a leaf of A(κ)
lifts to a single leaf of A(κ;m). We are assuming |κ| > 1. Choose ℓ ∈ κ \ (m), 1 ≤
j ≤ min(ℓ + 1,m+ 1), an ordered partition κ1 = (a1, . . . , aj) of m + 1 with j parts, and an

ordered partition κ2 = (b1, . . . , bj) of ℓ+1 with j parts. We define Ã(κ, κ1, κ2) to be the set of

(X, ω̃) ∈ Ω̃Mg(κ;m) with a collection of j homologous saddle connections γ1, . . . , γj from the
distinguished zero Z to a different zero Z ′ of order ℓ, cyclically ordered in counterclockwise
order around Z, and with the following properties.

(1) If γk has length ε > 0 for 1 ≤ k ≤ j, then every other saddle connection on (X, ω̃)
has length at least 3ε.

(2) Let X1, . . . , Xj be the connected components of X \ (γ1 ∪ · · · ∪ γj), where Xk is
bounded by γk ∪ γk+1, indices taken modulo j. The cone angle around Z inside Xk

is 2πak, and the cone angle around Z ′ inside Xk is 2πbk.

Note that homologous saddle connections have the same holonomy, and thus the same

length. We also define A(κ, κ1, κ2) = p(Ã(κ, κ1, κ2)). A collection of saddle connections

as above persists on an open neighborhood, so Ã(κ, κ1, κ2) and A(κ, κ1, κ2) are open subsets

of Ω̃Mg(κ;m) and ΩMg(κ), respectively.
The question of which configurations of homologous saddle connections can occur on a

holomorphic 1-form in a given connected component of ΩMg(κ) was studied in detail in
[EMZ]. As a consequence of some special cases of their results, we have the following.

Lemma 3.1. Let ΩMg(κ) be a stratum with |κ| > 1, and fix m ∈ κ.

(1) For all ℓ ∈ κ \ (m), A(κ, (m+ 1), (ℓ+ 1)) intersects each component of ΩMg(κ).
(2) If some mj ∈ κ is odd, then for all ℓ ∈ κ \ (m), A(κ, (m, 1), (ℓ, 1)) intersects each

nonhyperelliptic component of ΩMg(κ).
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Figure 3. A holomorphic 1-form in the intersection of A((3, 3), (3, 1), (3, 1))
with the nonhyperelliptic component of ΩM4(3, 3).

(3) If all mj ∈ κ are even, then for all ℓ ∈ κ\(m), A(κ, (m−1, 1, 1), (ℓ−1, 1, 1)) intersects
each nonhyperelliptic component of ΩMg(κ).

Proof. Each of statements (1), (2), and (3) in Lemma 3.1 follows from Lemmas 9.1, 10.2,
and 10.3 in [EMZ]. Statement (1) is part of the case of these lemmas where p = 1 in the
notation of [EMZ]. Statement (2) is part of the case where p = 2. Statement (3) is part of
the case where p = 3. □

See Figure 1 (right) for an illustration of Case 1 in the stratum ΩM2(1, 1), where the
saddle connection arises from the slits on the left. See Figure 3 for an illustration of Case 2
in the stratum ΩM4(3, 3).
The next lemma shows that leaves of A(κ) typically lift to leaves of A(κ;m).

Lemma 3.2. Let ΩMg(κ) be a stratum with |κ| > 1. Fix m ∈ κ, and let p : Ω̃Mg(κ;m) →
ΩMg(κ) be the stratum cover in (1). There is an open GL+(2,R)-invariant subset A ⊂
ΩMg(κ) that intersects each connected component of ΩMg(κ), such that if L is a leaf of
A(κ) that intersects A, then p−1(L) is a leaf of A(κ;m).

Proof. Fix ℓ ∈ κ \ (m), 1 ≤ j ≤ min(ℓ + 1,m + 1), κ1 = (a1, . . . , aj) an ordered partition
of m + 1, and κ2 = (b1, . . . , bj) an ordered partition of ℓ + 1. Suppose that A(κ, κ1, κ2) is
nonempty. Fix (X,ω) ∈ A(κ, κ1, κ2), fix (X, ω̃) ∈ p−1(X,ω), and let γ1, . . . , γj be homologous
saddle connections on (X,ω) as in the definition of A(κ, κ1, κ2). Let L be the leaf of A(κ)

through (X,ω), and let L̃ be the leaf of A(κ;m) through (X, ω̃).
By slitting X along γ1 ∪ · · · ∪ γj and gluing the left side of γk to the right side of γk+1,

indices taken modulo j, we obtain a finite collection of holomorphic 1-forms of lower genus,
(X1, ω1), . . . , (Xj, ωj). Each (Xk, ωk) has an oriented geodesic segment δk from a point Zk to
a point Z ′

k coming from the slits, specifically, from gluing the left side of γk to the right side
of γk+1. The order of ωk at Zk is ak−1, and the order of ωk at Z ′

k is bk−1. Let δk,1, . . . , δk,bk
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be the oriented geodesic segments on Xk starting at Z ′
k such that∫

δk,r

ωk = −
∫
δk

ωk

for 1 ≤ r ≤ bk, cyclically ordered in counterclockwise order around Z ′
k. We may assume that

δk,1 is δk with the opposite orientation. Slit Xk along δk,1 ∪ · · · ∪ δk,bk and glue the left side
of δk,r to the right side of δk,r+1, indices taken modulo bk, to obtain a holomorphic 1-form
(X ′

k, ω
′
k). This surgery combines Zk, Z

′
k into a single zero Zk, and when ak > 1 or bk > 1,

(Xk, ωk) arises from (X ′
k, ω

′
k) by splitting the zero Zk. The order of ω′

k at Zk is ak + bk − 2,
and the order of ω′

k at Z ′
k is 0. The union (X ′

1, ω
′
1)∪· · ·∪ (X ′

j, ω
′
j), with the points Z1, . . . , Zj

identified to a single node, can be viewed as a point in the metric completion of the leaf L.
We can reverse the process above to recover (X,ω) from the (X ′

k, ω
′
k). More generally, for

1 ≤ k ≤ j, choose a collection of oriented geodesic segments δ′k,1, . . . , δ
′
k,bk

on X ′
k starting at

Zk such that δ′k,r has length ε and the counterclockwise angle around Zk from δ′k,1 to δ′k,r
is 2π(r − 1) for 1 ≤ r ≤ bk. Slit X ′

k along δ′k,1 ∪ · · · ∪ δ′k,bk and glue the left side of δ′k,r
to the right side of δ′k,r+1, indices taken modulo bk. The resulting holomorphic 1-form has
a distinguished oriented geodesic segment δk coming from gluing the left side of δ′k,1 to the
right side of δ′k,2. Next, slit along the segments δk, 1 ≤ k ≤ j, and glue the left side of δk to
the right side of δk+1, indices taken modulo j, to obtain a holomorphic 1-form in A(κ, κ1, κ2).

The oriented geodesic segments of length ε on (X ′
k, ω

′
k) starting at Zk are parameterized by

R/2π(ak + bk − 1)Z. By rotating the chosen segments δ′k,1, . . . , δ
′
k,bk

counterclockwise around
Zk in the construction above, we obtain a family of holomorphic 1-forms sk(t) = (Xk,t, ωk,t)
such that sk(0) = (Xk, ωk) and ∫

δk

ωk,t = eit
∫
δk

ωk.

Moreover, since sk(t) is obtained from sk(0) by only modifying a contractible neighborhood
of Zk, the absolute periods do not change. Thus, by slitting sk(t) along δk for 1 ≤ k ≤ j and
gluing the left side of δk to the right side of δk+1, indices taken modulo j, we obtain a path

s : R → L

such that s(0) = (X,ω), and such that for t ∈ R and 1 ≤ k ≤ j, the holonomy of γk on s(t) is
given by eit

∫
γk
ω. Informally, s(t) is obtained from s(0) by rotating each saddle connection

γk around its starting point Z counterclockwise through an angle t. The image of s is a
small loop around a point in the metric completion of L. The choice of (X, ω̃) ∈ p−1(X,ω)
then determines a lift

s̃ : R → L̃

such that s̃(0) = (X, ω̃) and p(s̃(t)) = s(t) for all t ∈ R. See Figure 4 for an example in

Ã((3, 1), (3, 1), (1, 1)).
Rotating these saddle connections counterclockwise through an angle 2π(ak + bk − 1) does

not change (Xk, ωk), that is, sk(t+ 2π(ak + bk − 1)) = sk(t) for t ∈ R. Therefore, letting
N(κ1, κ2) = lcm1≤k≤j(ak + bk − 1),

we have
s(t) = s(t+ 2πN(κ1, κ2))

for t ∈ R. Letting c(t) be the counterclockwise angle around Z from the prong on s(t) to
the saddle connection γ1 on s(t), we have c(t) = c(0) + t for t ∈ R. For n ∈ Z, let θn be the
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Figure 4. A loop s̃ : R → L̃ around a point in the metric completion of a

leaf L̃ of A(κ;m), where κ = (3, 1), m = 3, and s̃(R) ⊂ Ã((3, 1), (3, 1), (1, 1)).
Along s̃(R), the saddle connections γ1, γ2 are rotated counterclockwise around
the zero of order 3. The 4 images show s̃(0) (top-left), s̃(2π) (top-right), s̃(4π)
(bottom-left), and s̃(6π) (bottom-right). We have s(0) = s(6π), but the prongs
(shown with dashes) are different. In this case, the 4 possible choices of prongs
are realized in p−1(s(0)) = {s̃(0), s̃(6π), s̃(12π), s̃(18π)}, and s̃(24π) = s̃(0).

prong on (X, ω̃) such that the counterclockwise angle from θ(ω̃) to θn is 2πn. Let (X, ω̃n)
be the element of p−1(X,ω) with θ(ω̃n) = θn. Then

s̃(2πN(κ1, κ2)) = (X, ω̃−N(κ1,κ2)) ∈ L̃.

The cone angle around Z is 2π(m+ 1), meaning (X, ω̃m+1) = (X, ω̃).

Since the action of G̃L
+
(2,R) on Ω̃Mg(κ;m) respects leaves of A(κ;m), and since p

is equivariant for the actions of G̃L
+
(2,R) and GL+(2,R), for any (Y, η̃) ∈ Ω̃Mg(κ;m)

such that L(η) intersects GL+(2,R) · A(κ, κ1, κ2), we similarly have (Y, η̃−N(κ1,κ2)) ∈ L(η̃).
Therefore, letting N1(κ1, κ2) = gcd(m+ 1, N(κ1, κ2)), we have

(Y, η̃nN1(κ1,κ2)) ∈ L(η̃)

for all n ∈ Z whenever L(η) intersects GL+(2,R) · A(κ, κ1, κ2).
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Now let C be a connected component of ΩMg(κ). Since A(κ, κ1, κ2) ∩ C is open, it has
positive measure whenever it is nonempty. By Lemma 3.1, there are ordered partitions
κ1, κ2 as above such that A(κ, κ1, κ2) ∩ C is nonempty. Let AC be the intersection of the
finitely many nonempty subsets of the form GL+(2,R) · (A(κ, κ1, κ2) ∩ C). By ergodicity
of the GL+(2,R)-action on C, we have that AC is nonempty. Moreover, AC is open and
GL+(2,R)-invariant. We claim that

gcd ({m+ 1} ∪ {N(κ1, κ2) : AC ⊂ A(κ, κ1, κ2)}) = 1. (3)

We verify this claim in 3 cases.

Case 1: Suppose that ℓ = m. By Lemma 3.1, we have

AC ⊂ A(κ, (m+ 1), (m+ 1)).

Since N((m+ 1), (m+ 1)) = 2m+ 1, the gcd in (3) divides gcd(m+ 1, 2m+ 1) = 1.

Case 2: Some part of κ is odd. By Case 1, we may assume that C is nonhyperelliptic. Note
that κ contains at least two odd parts, so we may assume that ℓ is odd. By Lemma 3.1,

AC ⊂ A(m, (m+ 1), (ℓ+ 1)), AC ⊂ A(m, (m, 1), (ℓ, 1)).

Since ℓ is odd and

N((m+ 1), (ℓ+ 1)) = m+ ℓ+ 1, N((m, 1), (ℓ, 1)) = m+ ℓ− 1,

the gcd in (3) divides

gcd(m+ 1,m+ ℓ+ 1,m+ ℓ− 1) = gcd(m+ 1, ℓ, 2) = 1.

Case 3: All parts of κ are even. By Case 1, we may assume that C is nonhyperelliptic. By
Lemma 3.1,

AC ⊂ A(m, (m+ 1), (ℓ+ 1)), AC ⊂ A(m, (m− 1, 1, 1), (ℓ− 1, 1, 1)).

Since m+ 1 is odd and

N((m− 1, 1, 1), (ℓ− 1, 1, 1)) = m+ ℓ− 3,

the gcd in (3) divides

gcd(m+ 1,m+ ℓ+ 1,m+ ℓ− 3) = gcd(m+ 1, ℓ, 4) = 1.

It remains to show that in the case where ℓ = m, the leaf L̃ also contains elements of
p−1(X,ω) for which the prong is at a different zero of order m. In this case, (X,ω) ∈
A(κ, (m + 1), (m + 1)) arises from a holomorphic 1-form in ΩMg(κ

′) by splitting a zero,
where κ′ = (κ \ (m,m)) ∪ (2m). If we apply the zero splitting map again to (X,ω), by
slitting along the m + 1 segments emanating from the starting point of γ1 with holonomy
−
∫
γ1
ω, then on the resulting holomorphic 1-form (X ′, ω′), the holonomy of γ1 is 2

∫
γ1
ω.

(Here, ω′ has the same number of zeros as ω.) Rotating the choice of segments for both zero

splitting operations simultaneously counterclockwise then gives us a small loop s̃1 : R → L̃,
and we have p(s̃1((m + 1)π)) = p(s̃1(0)). However, on s̃1((m + 1)π), the prong is on the
other zero of order m + 1. See Section 8.1 of [EMZ] for a similar discussion in strata with
labelled singularities.

To conclude, let A =
⋃

C AC where C ranges over the connected components of ΩMg(κ).
Then A is open, GL+(2,R)-invariant, and intersects every connected component of ΩMg(κ).
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Let L be a leaf of A(κ) that intersects A, and fix (X,ω) ∈ L∩A. By the claim in (3) and the
surgery in the previous paragraph, for any (X, ω̃) ∈ p−1(X,ω), the leaf of A(κ;m) through
(X, ω̃) contains p−1(X,ω). Thus, p−1(L) is a leaf of A(κ;m). □

When |κ| > 1, Lemma 3.2 implies that the preimage under p of a connected component

of ΩMg(κ) is a connected component of Ω̃Mg(κ;m). The same holds when |κ| = 1, since

in that case the orbit of (X, ω̃) under the rotation subgroup of G̃L
+
(2,R) contains p−1(X,ω).

Splitting zeros along leaves. Here, we show that leaves of FS admit a simple global
description in terms of leaves of A(κ;m).

Lemma 3.3. Let LS be the leaf of FS through (X, ω̃, γ). Then (X ′, ω̃′, γ′) ∈ LS if and only
if (X ′, ω̃′) is in the leaf of A(κ;m) through (X, ω̃) and γ′ ∈ S(ω′).

Proof. Let L̃ be the leaf of A(κ;m) through (X, ω̃), fix (X ′, ω̃′) ∈ L̃, and fix γ′ ∈ S(ω′). Let

s : [0, 1] → L̃ be a path such that s(0) = (X, ω̃) and s(1) = (X ′, ω̃′). Let (Xt, ω̃t) = s(t).
By compactness, there is ε > 0 such that for all t ∈ [0, 1], every saddle connection on s(t)
has length at least ε. Since ∆(ω) is path-connected, there is a path s1 : [0, 1] → LS such
that s1(0) = (X, ω̃, γ) and s1(1) = (X, ω̃, γ1), where γ1 has length less than ε. Using the

natural inclusions ∆(ωt) ↪→ C̃∗
m+1, we obtain a well-defined path s̃ : [0, 1] → LS given by

s̃(t) = (s(t), γ1). Then since ∆(ω′) is path-connected, there is a path s2 : [0, 1] → LS such
that s2(0) = (X ′, ω̃′, γ1) and s2(1) = (X ′, ω̃′, γ′). By concatenating s1, s̃, s2, we see that
(X ′, ω̃′, γ′) ∈ LS . The other containment is clear by definition of FS . □

Fix 1 ≤ j < m, let κ′ = (κ \ (m)) ∪ (m− j, j), and consider the associated zero splitting
map Φ : S(κ;m) → ΩMg(κ

′). Splitting a zero is a local surgery that only modifies a holo-
morphic 1-form in a contractible neighborhood of one of its zeros, so it does not change the
absolute periods. Therefore, Φ sends leaves of FS into leaves of A(κ′).

Geodesics on leaves. We will address the question of when leaves of A(κ;m) lift to leaves
of FT in the case |κ| = 2, which will be sufficient for our purposes. Before doing this, we
study the geometry of leaves of A(κ) in the case |κ| = 2 in greater detail. In this case,
a leaf L of A(κ) is a Riemann surface equipped with a canonical quadratic differential q.
To describe q, fix (X0, ω0) ∈ L and let γ be a saddle connection on (X0, ω0) with distinct
endpoints. Let Z1 and Z2 be the starting point of γ and the ending point of γ, respectively.
The map

r : (X,ω) 7→
∫
γ

ω ∈ C

provides a local coordinate on L near (X0, ω0), and we have q = dr2. For any z ∈ C∗, there
is a locally defined geodesic with respect to |q| through (X0, ω0),

s : (−ε, ε) → L, s(t) = (Xt, ωt),

such that d
dt

∫
γ
ωt = z. The maximal domain of definition of s is not necessarily R. How-

ever, the only obstruction is the existence of a saddle connection on (X0, ω0) with distinct
endpoints and with holonomy in Rz.
Corollary 3.4. ([BSW], Corollary 6.2) The maximal domain of definition of s contains
t0 ∈ R if and only if (X0, ω0) does not have a saddle connection from Z2 to Z1 with holonomy
in {tt0z : 0 ≤ t ≤ 1}.
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A more general version of Corollary 3.4 is proven in [BSW], which applies to any stratum
ΩMg(κ) with |κ| > 1. Note that [BSW] work with strata with labelled singularities. See
also [McM3], [MW].

Fix z ∈ C∗. Let s : (a, b) → L be a geodesic with respect to |q|, and suppose that (a, b) is
the maximal domain of definition of s and that −∞ < a < b < +∞. Choose a square root√
q along s(a, b). Corollary 3.4 implies that

∫
s(a,b)

√
q is constrained by the absolute periods

of the holomorphic 1-forms in L.

Lemma 3.5. Fix (X,ω) ∈ L. If s : (a, b) → L is a geodesic with respect to |q| such that
(a, b) is the maximal domain of definition of s, and −∞ < a < b < +∞, then∫

s(a,b)

√
q ∈ Per(ω).

Proof. For t ∈ (a, b), let (Xt, ωt) = s(t). By Corollary 3.4, there is z ∈ C∗ and a consistent
labelling Z1, Z2 of the zeros of (Xt, ωt), such that (Xt, ωt) has a saddle connection γ1(t) from
Z1 to Z2 and another saddle connection γ2(t) from Z2 to Z1 with holonomies∫

γ1(t)

ωt = (t− a)z,

∫
γ2(t)

ωt = (b− t)z.

Then γ(t) = γ1(t) ∪ γ2(t) is an oriented loop in Xt, and there is a choice of
√
q along s(a, b)

for which ∫
s(a,b)

√
q = (b− a)z =

∫
γ(t)

ωt ∈ Per(ωt) = Per(ω).

□

Segments s as in Lemma 3.5 can disconnect L when removed. Lemma 3.5 is not used in
the rest of the paper, but is included to help motivate the following crucial lemma.

Fix (X,ω) ∈ ΩMg(κ). When forming a connected sum with a torus, we are adding new
absolute periods, one of which arises from the segment δ being slit on (X,ω). This makes
the question of whether L(ω) lifts to a leaf of FT subtle, due to the possible presence of
a saddle connection γ on (X,ω) that is parallel to and shorter than the slit δ. When γ is
a closed loop, the connected sum construction may fail to be defined on large portions of
L(ω), but the holonomy of γ must be an absolute period of ω. Thus, if δ is not parallel to
an absolute period of ω, then γ must have distinct endpoints. In this case, the holonomy of
γ changes as we move along L(ω), and γ remains parallel to and shorter than δ only on a
geodesic segment in L(ω). Unlike the setting of Lemma 3.5, this segment is not parallel to
an absolute period of ω, and removing this segment from L(ω) does not disconnect L(ω).
The following lemma shows that leaves of A(κ) are not disconnected when removing all

of the holomorphic 1-forms with a saddle connection parallel to and shorter than a given
z ∈ C∗, provided that z is not parallel to any of the associated absolute periods. This
provides a sufficient condition for lifting leaves of A(κ) to leaves of FT .

Lemma 3.6. Let ΩMg(κ) be a stratum with |κ| = 2. Fix (X,ω) ∈ ΩMg(κ), let L be
the leaf of A(κ) through (X,ω), and let q be the canonical quadratic differential on L. Fix
z ∈ C∗ such that

z /∈
⋃

z0∈Per(ω)

Rz0.
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Let I = {tz : 0 ≤ t ≤ 1}, and let

L(I) = {(Y, η) ∈ L : Γ(η) ∩ I ̸= ∅} .
The subspace L(I) ⊂ L is closed, and is a countable union of embedded isolated parallel line
segments in the metric |q|. The complement L \ L(I) is path-connected.

Proof. By Lemma 2.4, the subset ΩMg(κ; I) of holomorphic 1-forms in ΩMg(κ) with a
saddle connection holonomy in I is closed. By definition,

L(I) = L ∩ ΩMg(κ; I),

so L(I) is closed in the subspace topology on L. Then since L is immersed, L(I) is closed in
the intrinsic topology on L.
Fix (Y, η) ∈ L(I), and let γ be a saddle connection on (Y, η) with holonomy in I. Since

(Y, η) ∈ L, we have Per(η) = Per(ω), and by assumption,

Rz ∩

 ⋃
z0∈Per(η)

Rz0

 = {0}.

Then since I ⊂ Rz, the holonomy of γ is not an absolute period of η, so γ has distinct
endpoints. Let Z be the starting point of γ, and let Z ′ be the ending point of γ. If γ′ is
another saddle connection on (Y, η) with holonomy in Rz, then since |κ| = 2, possibly after
reversing orientation, γ′ starts at Z and ends at Z ′. Concatenating γ with the reverse of
γ′ gives a closed loop whose associated absolute period is 0 since it lies in Rz, so γ and γ′

have the same holonomy. Thus, there are only finitely many saddle connections γ1, . . . , γm
on (Y, η) with holonomy in R>0z, and they all start at Z and end at Z ′. By Corollary 3.4,
there is a geodesic ray in L in the metric |q| through (Y, η) given by

s : R>0 → L, s(t) = (Yt, ηt),

such that for all t > 0 and 1 ≤ k ≤ m, ∫
γk

ηt = tz.

In particular, s is injective and s−1(L(I)) = (0, 1]. The period coordinates of s(1) lie in the
Q-span of Per(ω) and z, so there are only countably many possibilities for s(1). Thus, L(I)
is a countable union of embedded parallel line segments in the metric |q|.

Now, ℓ = s((0, 1]) is one of the countably many maximal line segments in L(I). Fix
0 < ε < 1, and let ℓε = s([ε, 1]). Since ℓε is a compact line segment in L, there is ε1 > 0
such that the ε1-neighborhood U of ℓε in the metric |q| is an embedded disk in L and has
compact closure. By Lemma 2.3, there are only finitely many homotopy classes of paths
δ1, . . . , δn on s(1) from Z to Z ′ for which the geodesic representative on some holomorphic
1-form in U has length less than 2|z|. Fix 0 < ε2 < |z|. Shrinking ε1 if necessary, we may
assume that along any straight path in U of length at most ε1, the length of the geodesic
representative of each δk changes by at most ε2. Suppose that some (Y ′, η′) ∈ U \ ℓ has a
saddle connection γ′ with holonomy in I. There is a straight path φ0 in L of length less than
ε1 from (Y ′, η′) to s(t0) = (Yt0 , ηt0) for some t0 ∈ [ε, 1]. Parallel transport of the homotopy
class of γ′ along φ0 gives a homotopy class of paths on (Yt0 , ηt0) such that the length of the
geodesic representative on (Yt0 , ηt0) is less than |z| + ε2. Since ε2 < |z|, the homotopy class
of γ′ is δj for some 1 ≤ j ≤ n. Since φ0 is not parallel to ℓ, we have

∫
δj
ηt0 /∈ Rz. Since φ0
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has length less than ε1 in the metric |q|, the change in
∫
δj
η′ along φ0 has absolute value less

than ε1. Thus, the Euclidean distance in C from
∫
δj
ηt0 to the line Rz is less than ε1. For

1 ≤ k ≤ n, let zk =
∫
δk
η1. Then∫

δk

ηt = zk + (t− 1)z ∈ zk + Rz

so the distance Dk from
∫
δk
ηt to Rz is constant. Let S be the subset of k ∈ {1, . . . , n} such

that Dk > 0, and let D = mink∈S Dk > 0. By shrinking ε1 further so that ε1 < D, we get a
contradiction. Thus, the ε1-neighborhood of ℓε is disjoint from L(I) \ ℓ. Letting ε → 0 and
taking a union of these neighborhoods of ℓε, we get a neighborhood of ℓ that is disjoint from
L(I) \ ℓ. Thus, the maximal line segments in L(I) are isolated.
Choose a path φ : [0, 1] → L such that φ(0) /∈ L(I) and φ(1) /∈ L(I). Applying a

homotopy to φ, keeping the endpoints fixed, we may assume that φ is piecewise-geodesic
with finitely many pieces in the metric |q|, that the endpoints of each piece do not lie in
L(I), and that each piece is not parallel to the line segments in L(I). By compactness, there
is 0 < ε < |z| such that for all t ∈ [0, 1], the length of the shortest saddle connection on φ(t)
is at least ε. Since L(I) ⊂ L is closed, φ([0, 1]) ∩ L(I) is compact, and since the maximal
line segments in L(I) are isolated, φ([0, 1]) ∩ L(I) is discrete. Therefore, φ([0, 1]) ∩ L(I) is
finite, so let 0 < t1 < · · · < tn < 1 be the finitely many times such that φ(tj) ∈ L(I). For
1 ≤ j ≤ n, let sj : R>0 → L be the geodesic ray through φ(tj) such that ℓj = sj((0, 1]) is a
maximal line segment in L(I), and let ℓj,ε = sj([ε, 1]). Fix ε1 > 0 such that for 1 ≤ j ≤ n,
the ε1-neighborhood of ℓj,ε is an embedded disk disjoint from L(I) \ ℓ. Fix ε2 > 0 such that
for 1 ≤ j ≤ n and t ∈ (tj−ε2, tj+ε2), the distance from φ(t) to ℓj is less than ε1 in the metric
|q|. Then for 1 ≤ j ≤ n, we can apply a homotopy to the restriction φ|[tj−ε2,tj+ε2], keeping
the endpoints φ(tj − ε2) and φ(tj + ε2) fixed, to arrange that the image of φ |[tj−ε2,tj+ε2]

is contained in the ε1-neighborhood of ℓj,ε and disjoint from ℓj. In other words, instead
of crossing ℓj at time tj, we go around ℓj while staying close to ℓj. This gives us a path
[0, 1] → L \ L(I) with the same starting point φ(0) and the same ending point φ(1). Thus,
L \ L(I) is path-connected. □

Remark 3.7. The hypothesis in Lemma 3.6 that z is not parallel to an absolute period of
ω can be weakened slightly to include the case where the group Per(ω)∩Rz is cyclic with a
generator w such that |w| > |z|.
Remark 3.8. In the special case where Per(ω) is the lattice Z+iZ, the leaf L = L(ω) is tiled
by finitely many unit squares for the metric |q|. See [Dur] for illustrations of these leaves in
the stratum ΩM2(1, 1). For z ∈ C∗ not parallel to any element of Z+ iZ, the subset L(I) is
a union of finitely many embedded parallel line segments with irrational slope, and in this
case it is easy to see that L \ L(I) is path-connected.

Connected sums along leaves. Lemma 3.6 also holds with Ω̃Mg(κ;m) and A(κ;m) in

place of ΩMg(κ) and A(κ), and the proof is the same. For L̃ a leaf of A(κ;m), define

L̃(I) = {(Y, η̃) ∈ L̃ : Γ(η) ∩ I ̸= ∅} as in Lemma 3.6. Consider the full measure subset of
T (κ;m) given by

Tconn(κ;m) =

(X, ω̃, (γ, w)) ∈ T (κ;m) :

∫
γ

ω /∈
⋃

z∈Per(ω)

Rz

 .
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Note that Tconn(κ;m) is a union of leaves of FT .

Corollary 3.9. Suppose |κ| = 2, fix (X, ω̃, T ) ∈ Tconn(κ;m), and write T = (γ, w). Let L̃
be the leaf of A(κ;m) through (X, ω̃), let LT be the leaf of FT through (X, ω̃, T ), and let

I =
{
t
∫
γ
ω : 0 ≤ t ≤ 1

}
. Then we have LT = (L̃ \ L̃(I))× {T}.

Lastly, let κ′ = (κ \ (m)) ∪ (m + 2), and consider the associated connected sum map
Ψ : T (κ;m) → ΩMg+1(κ

′). Then Ψ sends leaves of FT into leaves of A(κ′).

4. Pairs of splittings

This section focuses on holomorphic 1-forms in a stratum component that can presented
as a connected sum with a torus. Our goal is to show that any two such holomorphic 1-forms
with the same area are related by a finite sequence of moves as follows. In each move, we
choose a presentation as a connected sum, keep the torus fixed, and change the comple-
mentary holomorphic 1-form while preserving its area. Our main tool will be a criterion for
presenting a holomorphic 1-form as a connected sum in two different ways. In a later section,
we will prove our main theorems using stronger versions of this goal obtained by combining
the results of Sections 3 and 4.

Splittings. Recall from Section 2 that a splitting of (X,ω) is a pair of homologous saddle
connections α± on (X,ω) that form a figure-eight at a zero Z of ω, such that

(1) the counterclockwise angle around Z from the end of α− to the end of α+ is 2π;
(2) one of the connected components of X \ (α+ ∪ α−) is a cylinder C.

We will refer to C as the associated cylinder of α±. The homology class in H1(X;Z) rep-
resented by α± is denoted [α±]. Slitting (X,ω) along α± and regluing the sides of the slits
gives a holomorphic 1-form of genus g − 1 and a flat torus. For z, w ∈ C, the signed area of
the parallelogram spanned by z and w is given by Im(zw).

Lemma 4.1. Let α± be a splitting of (X,ω) with associated cylinder C, and choose a saddle
connection β ⊂ C ∪Z(ω). Suppose that (X,ω) has an embedded open parallelogram P with
one pair of parallel sides given by α± and the other pair given by a pair of homologous saddle
connections γ±

0 . Let

z =

∫
α±

ω, w =

∫
β

ω, z1 =

∫
γ±
0

ω,

and suppose that

Im(zw) > 0, Im(zz1) > 0, Im(z1w) > 0, Im
(
(z + w)(z1 + w)

)
> 0. (4)

Then P ∪C contains another splitting γ± of (X,ω) with associated cylinder C ′ and with the
same starting point and ending point as α±, and there is a saddle connection δ ⊂ C ′ ∪Z(ω)
such that

[γ±] = −[γ±
0 ]− [β], [δ] = [α±] + [β]

in H1(X;Z).

Proof. For M ∈ GL+(2,R), Im(zw) and Im(Mz Mw) have the same sign. There is an affine
homeomorphism (X,ω) → M(X,ω) that sends zeros to zeros, and sends a saddle connection
on (X,ω) with holonomy z0 to a saddle connection on M(X,ω) with holonomy Mz0. A pair
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of homologous saddle connections is a splitting of (X,ω) if and only if the corresponding
pair on M(X,ω) is a splitting of M(X,ω). Thus, it is enough to show that Lemma 4.1 holds
for M(X,ω). Since Im(zw) > 0, by applying an appropriate element of GL+(2,R) to (X,ω),
we may assume that z = 1 and w = i.

We regard C as a unit square with its vertical sides glued together to form β. The bottom
side of C is α−, and the top side of C is α+. Since z = 1 and w = i, the inequalities in (4)
reduce to

Im(z1) > 0, Re(z1) > 0, Im(z1)− Re(z1) + 1 > 0.

These inequalities imply 0 < Re(z1 + i) < Im(z1 + i), so there is a geodesic segment in the
direction of z1 + i from the bottom-left corner of C to a point in the interior of α+ that is
disjoint from the interior of the vertical saddle connection β. These inequalities also imply

Im(z1(z1 + i)) > 0 and Im
(
(z1 + i)(z1 − w)

)
> 0, so there is a geodesic segment in the

direction of −z1 − i from the top-left corner of P to a point in the interior of α+ that is
disjoint from the interiors of the saddle connections γ±

0 . Both of these geodesic segments end
at the same point on α+, and this point is a distance Re(z1)/(Im(z1) + 1) from the left end
of α+. Thus, there is a saddle connection γ− ⊂ P ∪ C from the top-left corner of P to the
bottom-left corner of C that crosses α+. Similarly, there is a saddle connection γ+ ⊂ P ∪C
from the top-right corner of C to the bottom-right corner of P that crosses α−.
The saddle connections γ± form the boundary of a cylinder C ′ ⊂ P ∪ C, so they are

homologous. In particular, the cylinder C ′ is one of the connected components of X \ (γ+ ∪
γ−). The saddle connections γ± have the same starting point and ending point Z as α±.
Since the counterclockwise angle around Z from the end of α− to the end of α+ is 2π, the
counterclockwise angle around Z from the end of γ− to the end of γ+ is also 2π. Thus, γ± is
another splitting of (X,ω). Let δ be the geodesic segment from the bottom-left corner of C
to the top-right corner of C. Then δ is a saddle connection contained in C ′∪Z(ω). All of the
saddle connections α±, γ±

0 , γ
±, β, δ have the same starting and ending point, and therefore

represent elements of H1(X;Z). The relations [γ±] = −[γ±
0 ] − [β] and [δ] = [α±] + [β] are

clear. □

See Figure 5 for an illustration of Lemma 4.1.

Related splittings. To any splitting α± of a holomorphic 1-form (X,ω) with associated
cylinder C, we can also associate a pair of absolute periods of ω as follows. Choose a saddle
connection β ⊂ C ∪ Z(ω). Let z =

∫
α± ω and w =

∫
β
ω. Reversing the orientation of β if

necessary, we may require that Im(zw) > 0. We say that the pair (z, w) are the associated
periods of the splitting α±. Note that Im(zw) is the area of C in the metric |ω|. Also, different
choices of β will yield absolute periods nz + w in place of w for all n ∈ Z. Thus, while the
period z is uniquely determined by the splitting α±, the period w is only determined up to
addition by an integer multiple of z.

For C a stratum component, define

C1(z, w) = {(X,ω) ∈ C1 : (X,ω) has a splitting with associated periods (z, w)} .

The following lemma provides a criterion for two subsets of the form C1(z, w) and C1(z′, w′)
to intersect. In other words, we will construct holomorphic 1-forms in C1 with two splittings
whose associated pairs of periods are (z, w) and (z′, w′), respectively.
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Figure 5. Left: a holomorphic 1-form in ΩM3(3, 1) with a splitting α± and
a second splitting γ± as in Lemma 4.1. Right: the parallelogram P and the
cylinder C, with the parallelogram sides α± and γ±

0 labelled.

Lemma 4.2. Let C be the nonhyperelliptic component of a stratum ΩMg(m1,m2) with
m1 ≥ 3 odd. Fix z, w, z1 ∈ C such that 0 < Im(zw) < 1 and such that

0 < Im(zz1) < 1− Im(zw), 0 < Im(z1w) < Im(z(z1 + w)). (5)

There exists (X,ω) ∈ C1 with a pair of splittings α± and γ± with associated cylinders C and
C ′, such that α± and γ± all start and end at the same zero of order m1, and there are saddle
connections β ⊂ C ∪ Z(ω) and δ ⊂ C ′ ∪ Z(ω), such that

z =

∫
α±

ω, w =

∫
β

ω, −z1 − w =

∫
γ±

ω, z + w =

∫
δ

ω.

Proof. Let T0 be the flat torus (C/(Zz + Zw), dz). By assumption Im(zz1) > 0, and in
particular z /∈ Rz1. If w1 ∈ C is such that z = t(mz1 + nw1) with t ∈ R and m,n ∈ Z,
then t ̸= 0 and n ̸= 0, therefore w1 lies in Rz + Qz1, a countable union of parallel lines.
The complement C \ (Rz + Qz1) is dense in C. Thus, we can choose w1 ∈ C such that
z /∈

⋃
z0∈Zz1+Zw1

Rz0 and such that

0 < Im(zz1) < Im(z1w1) < 1− Im(zw). (6)

Let T1 be the flat torus (C/(Zz1 + Zw1), dz). Let T2 be a flat torus with area less than
1− Im(zw)− Im(z1w1). The segment [0, z] ⊂ C projects to a closed geodesic α0 ⊂ T0, and
projects to an embedded geodesic segment α ⊂ T1.
The segments [0, z1], [z, z + z1] ⊂ C project to a pair of closed geodesics γ±

0 ⊂ T1 passing
through the endpoints of α and otherwise disjoint from α. The inequalities 0 < Im(zz1) <
Im(z1w1) in (6) imply that γ±

0 and the two sides of α bound an embedded open parallelogram
P ⊂ T1. For j = 1, 2, choose short embedded geodesic segments sj ⊂ Tj with the same length
and in the same direction, such that s1 starts at the starting point of α and is otherwise



DYNAMICS OF THE ABSOLUTE PERIOD FOLIATION OF A STRATUM 31

disjoint from P . Slit Tj along sj and reglue opposite sides to get a holomorphic 1-form
(X0, ω0) ∈ ΩM2(1, 1) given by a connected sum of two flat tori along a pair of homologous
saddle connections s±. On (X0, ω0), the starting point of α is a zero of ω0.

Let α1, . . . , α(m1−3)/2 be a collection of short embedded geodesic segments in T2, starting at
the zero that is the starting point of α and otherwise disjoint from each other and from s+∪s−.
Let α′

1, . . . , α
′
(m2−1)/2 be a collection of short embedded geodesic segments in T2, starting at

the other zero of ω0 and otherwise disjoint from each other and from s+ ∪ s−. Additionally,
we require that αj and α′

k are disjoint for all j, k. Slit (X0, ω0) along α, slit T0 along α0,
and reglue opposite sides to get a holomorphic 1-form in ΩM3(3, 1) with a splitting α± with
associated cylinder C. Then, iterate this procedure using the segments α1, . . . , α(m1−3)/2

and α′
1, . . . , α

′
(m2−1)/2 and using flat tori with appropriate areas to get a holomorphic 1-

form (X,ω) ∈ Ω1Mg(m1,m2). As discussed before Lemma 2.7, since (X,ω) has a splitting
it cannot lie in a hyperelliptic component, therefore (X,ω) ∈ C1. On (X,ω), we have∫
α± ω = z. Let β ⊂ C ∪ Z(ω) be a saddle connection such that

∫
β
ω = w. By construction,

the saddle connections α± have holonomy z, and the saddle connections γ±
0 have holonomy

z1. As part of the inequalities in (5), we have Im(zz1) > 0 and Im(z1w) > 0. Additionally,

the inequality Im(z1w) < Im(z(z1 + w)) is equivalent to Im
(
(z + w)(z1 + w)

)
> 0. Thus,

the saddle connections α±, γ±
0 and the parallelogram P on (X,ω) satisfy the hypotheses of

Lemma 4.1. Letting γ± be a splitting of (X,ω) with associated cylinder C ′ ⊂ P ∪ C and
δ ⊂ C ′ ∪ Z(ω) a saddle connection as in Lemma 4.1, we are done. □

Now define
T(0,1) =

{
(z, w) ∈ C2 : 0 < Im(zw) < 1

}
.

By definition, for all (z, w) ∈ T(0,1) and all n ∈ Z, we have

C1(z, w) = C1(z, nz + w).

Additionally, by Lemma 4.2, for all (z, w) ∈ T(0,1) and all z1 ∈ C satisfying the inequalities
in (5), the intersection

C1(z, w) ∩ C1(−z1 − w, z + w)

is nonempty. With the above two properties of the sets C1(z, w) in mind, let ∼ be an
equivalence relation on T(0,1) satisfying the following. We suppose that

(z, w) ∼ (z, nz + w) (7)

for all (z, w) ∈ T(0,1) and all n ∈ Z. We also suppose that

(z, w) ∼ (−z1 − w, z + w) (8)

for all (z, w) ∈ T(0,1) and all z1 ∈ C satisfying the inequalities in (5).
Let C be a stratum component as in Lemma 4.2. Fix (X,ω) ∈ C1 with a splitting α±

with associated cylinder C and associated periods (z, w) ∈ T(0,1). By definition, (X,ω) ∈
C1(z, w). If we change the complement of C in (X,ω), without changing C or the area of
its complement, then we get another holomorphic 1-form (X1, ω1) ∈ C1(z, w). Next, choose
a new splitting α±

1 of (X1, ω1), and repeat. By definition of ∼, for any (Y, η) ∈ C1 with a
splitting with associated pair (z′, w′) ∈ T(0,1) such that (z, w) ∼ (z′, w′), we can iterate this
procedure finitely many times to go from (X,ω) to (Y, η). Our goal is to show that (Y, η) can
be any holomorphic 1-form in C1 with a splitting, and Lemma 4.2 reduces this to showing
that any two elements of T(0,1) are equivalent with respect to ∼.
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Lemma 4.3. For all (z, w) ∈ T(0,1) and (z′, w′) ∈ T(0,1), we have (z, w) ∼ (z′, w′).

Proof. Observe that since T(0,1) is connected, it is enough to show that every equivalence class
for ∼ is open. Fix (z, w) ∈ T(0,1). Since Im(zw) > 0, there is z1 ∈ C such that Im(zz1) > 0
and Im(z1w) > 0. By multiplying z1 by small positive real numbers, we see that z1 can be
arbitrarily small. For such z1 sufficiently small, we have

0 < Im(zz1) < 1− Im(zw), 0 < Im(z1w) < Im(z(z1 + w)).

Let u1 = −z1 − w and v1 = z + w. Since (z, w) and z1 satisfy (5), we have (z, w) ∼ (u1, v1).
Similarly, since Im(u1v1) > 0, there is z2 ∈ C such that

0 < Im(u1z2) < 1− Im(u1v1), 0 < Im(z2v1) < Im(u1(z2 + v1)).

Let u2 = −z2−v1 and v2 = u1+v1. Since (u1, v1) and z2 satisfy (5), we have (u1, v1) ∼ (u2, v2).
The inequalities in (5) are open conditions, so for s, t ∈ C sufficiently small, by replacing
(z, w) with (z + s, w + t), z1 with z1 + s, and z2 with z2 − s− t, we get

(z + s, w + t) ∼ (−(z1 + s)− (w + t), (z + s) + (w + t)) = (u1 − s− t, v1 + s+ t)

∼ (−(z2 − s− t)− (v1 + s+ t), (u1 − s− t) + (v1 + s+ t)) = (u2, v2).

We have shown that (z, w) ∼ (u2, v2) ∼ (z+ s, w+ t) for all s, t ∈ C sufficiently small. Thus,
the equivalence class of (z, w) contains an open neighborhood of (z, w). □

To conclude this section, we adapt our connected sum constructions to subspaces of strata
defined by constraining the absolute periods to lie in certain closed subgroups. Let Λ be a
proper closed subgroup of C that is not discrete and that contains a lattice in C. Recall that
Λ = M · (R+ iZ) for some M ∈ SL(2,R). Let Λ0 = M · R be the identity component of Λ.
For z ∈ Λ, define

IΛ(z) = | Im(M−1z)| ∈ Z≥0. (9)

If z /∈ Λ0, then IΛ(z) is the index [Λ : Λ0 + Zz]. If z ∈ Λ0, then IΛ(z) = 0. Recall that if C
is a stratum component, then CΛ denotes the set of (X,ω) ∈ C such that Per(ω) + Λ0 = Λ.
Associated to a splitting of (X,ω) ∈ CΛ

1 is a pair of periods (z, w) ∈ T(0,1) and a holomorphic
1-form (X1, ω1) of genus g − 1 satisfying Per(ω1) + Λ0 = nΛ for some n ∈ Z>0. Since

Λ = Per(ω) + Λ0 = Zz + Zw + Per(ω1) + Λ0 = Zz + Zw + nΛ,

we have gcd(IΛ(z), IΛ(w), n) = 1. With Lemma 3.6 and Corollary 3.9 in mind, we will focus
on splittings that are not parallel to Λ0. Define

T Λ
(0,1) = {(z, w, n) ∈ (Λ \ Λ0)× Λ× Z>0 : 0 < Im(zw) < 1, gcd(IΛ(z), IΛ(w), n) = 1}.

Then any splitting of (X,ω) ∈ CΛ
1 that is not parallel to Λ0 determines an element of T Λ

(0,1)

as above. Let ∼Λ be an equivalence relation on T Λ
(0,1) satisfying the following. We suppose

that
(z, w, n) ∼Λ (z, kz + w, n) (10)

for all (z, w, n) ∈ T Λ
(0,1) and all k ∈ Z. We suppose that

(z, w, n) ∼Λ (−z1 − w, z + w, gcd(IΛ(z + w), n)) (11)

for all (z, w, n) ∈ T Λ
(0,1) and all z1 ∈ nΛ\Λ0 such that IΛ(−z1−w) ̸= 0, and such that z, w, z1

satisfy the inequalities in (5). Lastly, we suppose that

(z, w, n) ∼Λ (−z1 − w, z + w, gcd(IΛ(z + w), n)) (12)
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for all (z, w, n) ∈ T Λ
(0,1) with w ∈ Λ \ Λ0 and all z1 ∈ nΛ0 = Λ0 such that z, w, z1 satisfy the

inequalities in (5), and such that there is w1 ∈ nΛ satisfying Im(z1w1) > 0 and

0 < Im(zz1) < Im(z1w1) < 1− Im(zw). (13)

The following lemma is an analogue of Lemma 4.2 for CΛ.

Lemma 4.4. Let C be the nonhyperelliptic component of a stratum ΩMg(m1,m2) with
m1 ≥ 3 odd. Let Λ = M · (R + iZ) with M ∈ SL(2,R), and let Λ0 = M · R. Fix
(z, w, n) ∈ T Λ

(0,1) and z1 ∈ C satisfying (5), and also satisfying (13) if z1 ∈ Λ0. There exists

(X,ω) ∈ CΛ
1 with a pair of splittings α± and γ± with associated cylinders C and C ′, such that

α± and γ± all start and end at the same zero of order m1, and there are saddle connections
β ⊂ C ∪ Z(ω) and δ ⊂ C ′ ∪ Z(ω), such that

z =

∫
α±

ω, w =

∫
β

ω, −z1 − w =

∫
γ±

ω, z + w =

∫
δ

ω.

Moreover, the holomorphic 1-forms (X1, ω1), (X2, ω2) ∈ ΩMg−1(m1 − 2,m2) obtained from
(X,ω) by slitting and regluing α±, γ±, respectively, satisfy Per(ω1)+Λ0 = nΛ and Per(ω2)+
Λ0 = n1Λ where n1 = gcd(IΛ(z + w), n).

Proof. The proof is similar to that of Lemma 4.2. Let T0 = (C/(Zz+Zw), dz). Since z /∈ Λ0,
Rz+Qz1 is a countable union of parallel lines that are not parallel to Λ0, so the intersection
(Rz+Qz1)∩Λ is countable. First, suppose z1 ∈ nΛ\Λ0. Then for any connected component
Ca = M · (R + iaZ) of Λ, a ∈ Z, we have {Im(z1w0) : w0 ∈ Ca} = R. Thus, we can choose
w1 ∈ nΛ\(Rz+Qz1) satisfying the inequalities in (6), and we have z /∈

⋃
z0∈Zz1+Zw1

Rz0. Next,
suppose z1 ∈ Λ0. In this case, for each a ∈ Z, the set {Im(z1w0) : w0 ∈ Ca} is a singleton,
and (13) ensures that we can choose w1 ∈ nΛ \ (Rz +Qz1) satisfying the inequalities in (6),
and again we have z /∈

⋃
z0∈Zz1+Zw1

Rz0.
With w1 chosen as in the previous paragraph, let T1 = (C/(Zz1 + Zw1), dz). Let T2 =

(C/(Zz2 + Zw2), dz) be a flat torus with z2, w2 ∈ nΛ such that T2 has area less than 1 −
Im(zw) − Im(z1w1), and such that gcd(IΛ(z2), IΛ(w2)) = n. The rest of the construction
is the same as in the proof of Lemma 4.2, except as follows. For α1, . . . , α(m1−3)/2, we
choose short embedded horizontal segments in T2, such that α1 starts at the zero that is
the starting point of α and emanates rightward, and such that αj+1 starts at the ending
point of αj and emanates rightward for j = 1, . . . , (m1 − 5)/2. For α′

1, . . . , α
′
(m1−1)/2, we

choose short embedded horizontal segments in T2, such that α′
1 starts at the other zero

of ω0 and emanates rightward, and such that α′
j+1 starts at the ending point of α′

j and
emanates rightward for j = 1, . . . , (m2 − 3)/2. The associated flat tori T3, . . . , Tg−1 all have
the form Tj = (C/(Zzj + Zwj), dz) with zj ∈ Λ0 and wj ∈ nΛ \ Λ0. Let (X,ω) ∈ CΛ

1

be the resulting holomorphic 1-form with splittings α± and γ± as in the proof of Lemma
4.2. Let (X1, ω1), (X2, ω2) ∈ ΩMg−1(m1 − 2,m2) be the holomorphic 1-forms obtained from
(X,ω) by slitting and regluing α±, γ±, respectively. Since gcd(IΛ(z2), IΛ(w2)) = n and
z1, w1, z3, w3, . . . , zg−1, wg−1 ∈ nΛ, we have Per(ω1)+Λ0 = nΛ. This means the tuple in T Λ

(0,1)

associated to α± is (z, w, n). The tuple associated to γ± has the form (−z1 − w, z + w, n1)
for some n1 ∈ Z>0. We have

Per(ω2) + Λ0 = Zz1 + Z(z + w + w1) + nΛ = Z(z + w) + nΛ.

Thus, n1 = gcd(IΛ(z + w), n) as desired. □
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Lastly, we prove an analogue of Lemma 4.3 in the setting of absolute periods constrained
to lie in certain closed subgroups of C.

Lemma 4.5. Let Λ = M · (R + iZ) with M ∈ SL(2,R). For all (z, w, n) ∈ T Λ
(0,1) and

(z′, w′, n′) ∈ T Λ
(0,1), we have (z, w, n) ∼Λ (z′, w′, n′).

Proof. We may assume Λ = R+ iZ. The connected components of T Λ
(0,1) are given by

Ca,b,c = T Λ
(0,1) ∩ ((R+ ia)× (R+ ib)× {c})

= {(r1 + ia, r2 + ib, c) : r1, r2 ∈ R, 0 < r1b− r2a < 1}

with a ∈ Z \ {0}, b ∈ Z, c ∈ Z>0 satisfying gcd(a, b, c) = 1. For any (z, w, n) ∈ T Λ
(0,1), since

Im(z) ̸= 0, there is k ∈ Z such that Im(z) and Im(kz + w) have opposite signs. Following
the proof of Lemma 4.3, there are arbitrarily small z1 ∈ R such that (z, kz + w, n) and z1
satisfy the inequalities in (5) and (13). By definition of ∼Λ, we then have

(z, w, n) ∼Λ (z, kz + w, n) ∼Λ (−z1 − kz − w, (k + 1)z + w, n′)

where n′ = gcd(IΛ((k+1)z+w), n). Similarly, letting (z′, w′, n′) = (−z1−kz−w, (k+1)z+
w, n′), there is ℓ ∈ Z such that Im(z′) and Im(ℓz′ + w′) have opposite signs, and then there
are arbitrarily small z2 ∈ R such that

(z′, w′, n′) ∼Λ (z′, ℓz′ + w′, n′) ∼Λ (−z2 − ℓz′ − w′, (ℓ+ 1)z′ + w′, n′′),

where n′′ = gcd(IΛ((ℓ+ 1)z′ +w′), n′). The inequalities in (5) and (13) are open conditions,
and as in the proof of Lemma 4.3, we see that the equivalence class of (z, w, n) with respect
to ∼Λ contains an open neighborhood of (z, w, n). Then each equivalence class for ∼Λ is
open, and therefore a union of connected components of T Λ

(0,1). Thus, it is enough to show

that each equivalence class for ∼Λ intersects every connected component of T Λ
(0,1). We will

carry this out in three steps as follows. Let E(a, b, c) denote the equivalence class containing
the connected component Ca,b,c.

Step 1: Fix (z, w, n) ∈ T Λ
(0,1). We first show that the equivalence class of (z, w, n) contains a

connected component of the form Ca,b,1. Since this equivalence class contains the connected
component of (z, w, n) in T Λ

(0,1), we may assume that Re(z) = 0. Since the action of −I ∈
SL(2,R) on C respects ∼Λ, we may assume that Im(z) > 0. Additionally, by (10), we may
assume that 0 ≤ Im(w) < Im(z).
Write z = im1 and w = t + in1 with m1, n1 ∈ Z, 0 ≤ n1 < m1, and 0 < −t < 1/m1. Fix

z1 = s+ im2 ∈ R+ inZ and k ∈ Z with m2 ̸= 0 and m2 ̸= −km1 − n1. We have

Im(zz1) = −sm1, 1− Im(z(kz + w)) = 1 + tm1,

Im(z1(kz + w)) = s(km1 + n1)− tm2, Im(z(z1 + kz + w)) = −(s+ t)m1.

Then by definition of ∼Λ, if

0 < −sm1 < 1 + tm1, 0 < s(km1 + n1)− tm2 < −(s+ t)m1, (14)

then (z, w, n) ∼Λ (−z1−kz−w, (k+1)z+w, gcd(IΛ((k+1)z+w), n)). By dividing the first
group of inequalities in (14) by m1 > 0 and the second group of inequalities by −tm1 > 0,
we see that (14) is equivalent to

0 < −s <
1

m1

+ t, 0 < −s

t

(
k +

n1

m1

)
+

m2

m1

<
s

t
+ 1. (15)
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Note that s/t+ 1 > 1 and 0 ≤ n1/m1 < 1.
Fix m2 ∈ nZ<0, and let k ∈ Z<0 be large. Here, k may depend on m1, n1,m2, t. As −s

ranges from 0 to 1/m1 + t, the middle expression in the second group of inequalities in (15)
ranges from m2/m1 < 0 to (1/tm1+1)(k+n1/m1)+m2/m1 > 0, where positivity is ensured
since 1/tm1 + 1 < 0 and since k + n1/m1 < 0 is large. Thus, there is s ∈ (−1/m1 − t, 0)
satisfying the inequalities in (15), and then z1 = s+ im2 satisfies

(z, w, n) ∼Λ (−z1 − kz − w, (k + 1)z + w, n′),

where n′ = gcd(IΛ((k + 1)z + w), n). Similarly, there is s′ ∈ (−1/m1 − t, 0) such that
z′1 = s′ + im2 satisfies

(z, w, n) ∼Λ (−z′1 − (k + 1)z − w, (k + 2)z + w, n′′),

where n′′ = gcd(IΛ((k + 2)z + w), n). Both n′ and n′′ divide n. If n′ = n and n′′ = n, then
(k + 1)z + w ∈ nΛ and (k + 2)z + w ∈ nΛ, which implies z, w ∈ nΛ, a contradiction since
gcd(IΛ(z), IΛ(w), n) = 1. Therefore, n′ < n or n′′ < n, and by iterating this procedure, we
see that E(m1, n1, n) contains a connected component of the form Ca,b,1.

Step 2: Fix (z, w, 1) ∈ T Λ
(0,1), and let n2 = gcd(IΛ(z), IΛ(w)) > 0. We next show that the

equivalence class of (z, w, 1) contains Cn2,0,1 if Im(z) > 0, and contains C−n2,0,1 if Im(z) < 0.
As in Step 1, we may assume Re(z) = 0 and Im(z) > 0, so that z = im1 and w = t + in1

with m1, n1 ∈ Z, 0 ≤ n1 < m1, and 0 < −t < 1/m1. If n1 = 0, we are done, so assume
n1 > 0 as well.

Let m2 = 0 and k = −1. Since 0 < n1/m1 < 1, we have k + n1/m1 < 0. As −s ranges
from 0 to 1/m1 + t, the middle expression in the second group of inequalities in (15) ranges
from 0 to (1/tm1 + 1)(k + n1/m1) > 0. Letting z1 = s < 0 be sufficiently small, we see that
s satisfies the inequalities in (14), and (z, w, 1) and z1 satisfy (13), therefore

(z, w, 1) ∼Λ (−z1 − kz − w, (k + 1)z + w, 1) = (−s+ z − w,w, 1).

This shows that E(m1, n1, 1) = E(m1 − n1, n1, 1). By (10), we also have E(m1, n1, 1) =
E(m1, dm1 + n1, 1) for all d ∈ Z. Thus, by iterating this procedure and running the Eu-
clidean algorithm on the pair of integers (m1, n1), we see that E(m1, n1, 1) = E(n2, 0, 1).

Step 3: We conclude by showing that all of the connected components Cn2,0,1, n2 ∈ Z \ {0},
lie in the same equivalence class. By Step 2, we have E(n2, 0, 1) = E(n2, n2, 1). Suppose
n2 > 1. Let z = in2, and let w = t+ in2 with 0 < −t < 1/n2. Fix m2 ∈ Z with 0 < m2 < n2,
and let k = 0. As −s ranges from 0 to 1/n2+ t, the middle expression in the second group of
inequalities in (15) ranges from m2/n2 > 0 to 1/tn2+1+m2/n2 (in this case, m1 = n1 = n2).
Since 0 < m2/n2 < 1, for sufficiently small s < 0, letting z1 = s+ im2, we have

(z, w, 1) ∼Λ (−z1 − w, z + w, 1) = (−(s+ t)− (n2 +m2)i, t+ 2n2i, 1).

Then E(n2, 0, 1) = E(−n2 −m2, 2n2, 1) for all 0 < m2 < n2. Taking m2 = n2 − 1, by Step
2 we have E(n2, 0, 1) = E(−2n2 + 1, 2n2, 1) = E(−1, 0, 1). If n2 > 2, taking m2 = n2 − 2,
by Step 2 we also have E(n2, 0, 1) = E(−2n2 + 2, 2n2, 1) = E(−2, 0, 1). Similarly, for all
n2 ∈ Z with n2 < −1, we have E(n2, 0, 1) = E(1, 0, 1), and if n2 < −2, we also have
E(n2, 0, 1) = E(2, 0, 1). We have shown that for all integers n2 > 2,

E(n2, 0, 1) = E(−1, 0, 1), E(n2, 0, 1) = E(−2, 0, 1) = E(1, 0, 1),
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and similarly, for all integers n2 < −2,

E(n2, 0, 1) = E(1, 0, 1), E(n2, 0, 1) = E(2, 0, 1) = E(−1, 0, 1).

Thus, for all n2 ∈ Z \ {0}, we have E(n2, 0, 1) = E(1, 0, 1) and we are done. □

5. Periods under connected sums

This brief section contains additional preparatory lemmas for our proofs of Theorems 1.1
and 1.3, on the behavior of the group of absolute periods under connected sums. Roughly
speaking, the absolute periods of the holomorphic 1-forms considered in Theorem 1.1 do not
satisfy any atypical Q-linear relations and do not have any atypical pairs of parallel absolute
periods. We first show that removing a torus from a connected sum presentation preserves
these properties, and we use these properties to give an explicit criterion for a leaf of A(κ)
to contain holomorphic 1-forms with a dense GL+(2,R)-orbit.

Lemma 5.1. Suppose (X ′, ω′) ∈ ΩMg+1(κ
′) arises from (X,ω) ∈ ΩMg(κ) by a connected

sum with a torus, and let γ be the associated geodesic segment in (X,ω). If Per(ω′) satisfies

Per(ω′) ∼= Z2(g+1), Per(ω′) ∩ Rz ⊂ Qz for all z ∈ C,

then Per(ω) satisfies

Per(ω) ∼= Z2g, Per(ω) ∩ Rz ⊂ Qz for all z ∈ C.

Moreover,
∫
γ
ω /∈

⋃
z∈Per(ω) Rz.

Proof. The inclusion X \ γ ↪→ X ′ induces an injection f : H1(X;Z) ↪→ H1(X
′;Z) such

that
∫
c
ω =

∫
f(c)

ω′ for all c ∈ H1(X;Z). Since Per(ω′) ∼= Z2(g+1), the homomorphism

H1(X
′;Z) → C, c′ 7→

∫
c′
ω′, is injective. This implies the homomorphism H1(X;Z) → C,

d 7→
∫
d
ω is also injective, and thus Per(ω) ∼= Z2g. Next, fix z ∈ C. Since

∫
c
ω =

∫
f(c)

ω′ for

all c ∈ H1(X;Z), we have Per(ω) ⊂ Per(ω′). Then since Per(ω′) ∩ Rz ⊂ Qz, we also have
Per(ω) ∩ Rz ⊂ Qz.
Lastly, let γ± be the given splitting of (X ′, ω′). In other words, (X,ω) is the holomorphic

1-form of genus g obtained from (X ′, ω′) by slitting and regluing γ± and taking the connected
component of genus g. Let c′ = [γ±] ∈ H1(X

′;Z), and let C be the associated cylinder on
(X ′, ω′). Then c′ is represented by a closed geodesic α contained in C. Let β ⊂ C ∪Z(ω′) be
a saddle connection crossing C. Then β is a closed loop intersecting α exactly once. On the
other hand, the image f(H1(X;Z)) is generated by homology classes represented by simple
closed curves in X ′ \C, which are in particular disjoint from α∪ β. Thus, c′ /∈ f(H1(X;Z)).
Then since Per(ω′) ∼= Z2(g+1) and Per(ω′) ∩Rz ⊂ Qz for all z ∈ C, we have

∫
c′
ω′ /∈ R

∫
f(c)

ω

for all c ∈ H1(X;Z). This means
∫
γ
ω /∈

⋃
z∈Per(ω) Rz. □

By [EMM] and [Wri1], a GL+(2,R)-orbit closure in a stratum is defined in local period
coordinates by homogeneous R-linear equations with coefficients in a number field. The
smallest such number field is the affine field of definition of the orbit closure. By [Wri2],
when the affine field of definition is not Q, every holomorphic 1-form in the orbit closure has
a pair of parallel cylinders whose circumferences have an irrational ratio. These results yield
a simple criterion for a leaf of A(κ) to contain holomorphic 1-forms with a dense GL+(2,R)-
orbit. Recall that for (X,ω) ∈ ΩMg(κ), the leaf of A(κ) through (X,ω) is denoted L(ω).
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Lemma 5.2. Fix (X0, ω0) ∈ ΩMg(κ) such that Per(ω0) ∼= Z2g and Per(ω0) ∩ Rz ⊂ Qz for
all z ∈ C. For a dense subset of (X,ω) ∈ L(ω0), the GL+(2,R)-orbit of (X,ω) is dense in its
connected component in ΩMg(κ).

Proof. Fix (X,ω) ∈ L(ω0). Let {aj, bj}gj=1 be a basis for H1(X;Z), and extend to a basis

{aj, bj}gj=1∪{cj}n−1
j=1 forH1(X,Z(ω);Z). Suppose the GL+(2,R)-orbit of (X,ω) is not dense in

its stratum component. Then the period coordinates
∫
a1
ω, . . . ,

∫
cn−1

ω satisfy a homogeneous

linear equation with coefficients in a number field K ⊂ R. Since there are only countably
many possible equations, after moving a small distance in L(ω0) we can ensure that the
coefficients of

∫
cj
ω in such an equation must all be 0. This means

g∑
j=1

(
sj

∫
aj

ω + tj

∫
bj

ω

)
= 0

for some sj, tj ∈ K. Since Per(ω) ∼= Z2g, at least one of the coefficients sj, tj is not in
Q. Therefore, the affine field of definition of the GL+(2,R)-orbit closure of (X,ω) is not
Q. Then (X,ω) has parallel cylinders C1, C2, and closed geodesics αj ⊂ Cj, such that the
absolute periods

∫
α1

ω and
∫
α2

ω satisfy
∫
α1

ω/
∫
α2

ω ∈ R \Q. But then

Z
∫
α1

ω + Z
∫
α2

ω ⊂ Per(ω) ∩ R
∫
α1

ω,

a contradiction since Per(ω) = Per(ω0). □

Next, we prove versions of Lemmas 5.1 and 5.2 for the holomorphic 1-forms considered in
Theorem 1.3. The absolute periods of these holomorphic 1-forms do not satisfy any atypical
Q-linear relations, and they are not dense in C, which forces them to be dense in a closed
subgroup of the form M · (R+ iZ) for some M ∈ SL(2,R).

Lemma 5.3. Suppose (X ′, ω′) ∈ ΩMg+1(κ
′) arises from (X,ω) ∈ ΩMg(κ) by a connected

sum with a torus, and let γ be the associated geodesic segment in (X,ω). If Per(ω′) satisfies

Per(ω′) ∼= Z2(g+1), and Per(ω′) is not dense in C,
then Per(ω) satisfies

Per(ω) ∼= Z2g, and Per(ω) is not dense in C.
Moreover, letting M ∈ SL(2,R) be such that Per(ω) is dense in M · (R+ iZ), if

∫
γ
ω /∈ M ·R,

then
∫
γ
ω /∈

⋃
z∈Per(ω) Rz.

Proof. Similar to the proof of Lemma 5.1. □

Lemma 5.4. Fix (X0, ω0) ∈ ΩMg(κ) such that Per(ω0) ∼= Z2g is not dense in C. For a dense
subset of (X,ω) ∈ L(ω0), the GL+(2,R)-orbit of (X,ω) is dense in its stratum component.

Proof. By applying an element of SL(2,R), we may assume that Per(ω0) is dense in R+ iZ.
As in the proof of Lemma 5.2, for a dense subset of (X,ω) ∈ L(ω0), if the GL+(2,R)-orbit
closure of (X,ω) is not dense in its stratum component, then the affine field of definition
of the orbit closure is not Q. By Theorem 2 in [Mas2], the set of directions of cylinders on
(X,ω) is dense in S1, so there are non-horizontal parallel cylinders C1, C2 on (X,ω) and closed
geodesics αj ⊂ Cj satisfying

∫
α1

ω/
∫
α2

ω ∈ R\Q. However, since Per(ω) = Per(ω0) ⊂ R+ iZ
and Per(ω) ∼= Z2g, we have Per(ω) ∩ Rz ⊂ Qz for all z ∈ C \ R, a contradiction. □
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6. Connectivity of spaces of isoperiodic forms

In this section, we prove that spaces of isoperiodic forms in most stratum components
are typically connected, and we describe a monodromy obstruction to the connectivity of
these spaces in the remaining stratum components. We also deduce the ergodicity of the
absolute period foliation and provide explicit full measure sets of dense leaves in most strata.

Spaces of isoperiodic forms. Fix g ≥ 2. Recall that Sg denotes the connected closed
oriented surface of genus g, and the cohomology group H1(Sg;C) is identified with the

group of homomorphisms H1(Sg;Z) → C. Let ⟨α, β⟩ = i
2

∫
Sg

α ∧ β be the intersection

form on H1(Sg;C). For ϕ ∈ H1(Sg;C), define Per(ϕ) to be the image of the associated
homomorphism H1(Sg;Z) → C. The self-intersection ⟨ϕ, ϕ⟩ is given by

⟨ϕ, ϕ⟩ =
g∑

j=1

Im
(
ϕ(aj)ϕ(bj)

)
where {aj, bj}gj=1 is a symplectic basis for H1(Sg;Z) with respect to the algebraic intersection
form onH1(Sg;Z). One can verify that this formula is independent of the choice of symplectic
basis, for instance using one of the generating sets for the integral symplectic group Sp(2g,Z)
found in Section 6.1 of [FM]. We say that ϕ is positive if ⟨ϕ, ϕ⟩ > 0. When ϕ is positive, we
say that ϕ is elliptic of degree d > 0 if Per(ϕ) is a lattice in C and the naturally associated
homotopy class of maps Sg → C/Per(ϕ) has degree d.
Let Homeo+(Sg, X) be the set of orientation-preserving homeomorphisms Sg → X. The

space of isoperiodic forms representing ϕ is defined by

M(ϕ) =
{
(X,ω) ∈ ΩMg : f

∗([ω]) = ϕ for some f ∈ Homeo+(Sg, X)
}
.

Here, [ω] ∈ H1(X;C) denotes the cohomology class represented by ω. Any two holomorphic
1-forms (X,ω), (Y, η) ∈ M(ϕ) are isoperiodic, in the sense that there is a symplectic isomor-
phism m : H1(X;Z) → H1(Y ;Z) such that

∫
c
ω =

∫
m(c)

η for all c ∈ H1(X;Z). The area of

any (X,ω) ∈ M(ϕ) is given by Area(X,ω) = ⟨ϕ, ϕ⟩. For C a stratum component, we define

C(ϕ) = C ∩M(ϕ).

The symplectic automorphism group Aut(H1(Sg;Z)) ∼= Sp(2g,Z) acts on the group of ho-
momorphisms H1(Sg;Z) → C, and C(ϕ) only depends on the orbit of ϕ under this action.

Haupt’s theorem [Hau] says that M(ϕ) is nonempty if and only if ϕ is positive and not
elliptic of degree 1. Haupt’s theorem was rediscovered in [Kap] using tools from homogeneous
dynamics, and another proof is given in [CDF]. A generalization of Haupt’s theorem to
stratum components was proven in [BJJP], and an independent proof for strata (without
considering their connected components) is given in [Fil]. In particular, if ϕ is positive and
Per(ϕ) is not a lattice in C, then C(ϕ) is nonempty for all stratum components C.

The proof of Haupt’s theorem in [Kap] relies on classifying the Sp(2g,Z)-orbit closures in
the set of positive cohomology classes in H1(Sg;C). Roughly speaking, when g ≥ 3 these
orbit closures are determined by the closure of the associated group of absolute periods. For
a > 0, let Ea be the set of cohomology classes ϕ ∈ H1(Sg;C) with ⟨ϕ, ϕ⟩ = a. For Λ ⊂ C a
closed subgroup of the form Λ = M · (R + iZ) with M ∈ SL(2,R) and identity component
Λ0 = M · R, let EΛ

a be the set of ϕ ∈ Ea such that Per(ϕ) + Λ0 = Λ.
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Lemma 6.1. ([Kap], see Proposition 3.10 in [CDF]). Suppose g ≥ 3. Fix ϕ ∈ H1(Sg;C)
with ⟨ϕ, ϕ⟩ = a > 0, and let Λ be the closure of Per(ϕ) in C.

(1) If Λ = C, then the closure of Sp(2g,Z) · ϕ is Ea.
(2) If Λ = M · (R+ iZ) with M ∈ SL(2,R), then the closure of Sp(2g,Z) · ϕ is EΛ

a .
(3) If Λ = Per(ϕ), then Sp(2g,Z) · ϕ is closed.

If g = 2, there is one additional case when Λ = C and ϕ arises from an eigenform for real
multiplication. In that case, the closure of Sp(2g,Z) · ϕ is given by SL(2,R) · (Sp(2g,Z) · ϕ).

For more details about eigenforms in genus 2, we refer to Section 5 in [McM1]. For our
purposes, we will only need to know that when g = 2, Λ = C, and ϕ arises from an eigenform
for real multiplication, we have Per(ϕ) ∩ Rz ∼= Z2 for all nonzero z ∈ Per(ϕ). In particular,
there are atypical pairs of parallel absolute periods in this case.

Setup for proving Theorem 1.1. Let C be a stratum component and let ϕ ∈ H1(Sg;C)
be a positive cohomology class, such that C and ϕ satisfy the hypotheses of Theorem 1.1. We
now begin our proof that C(ϕ) is connected. It will be easy to reduce to the case of strata
with two zeros by splitting zeros, so we will focus on this case here.

A connected component of C(ϕ) is a leaf of the absolute period foliation of C. Lemma
4.2 constructs holomorphic 1-forms in C with a splitting. Any splitting persists on an open
neighborhood in a stratum, and splittings are preserved by the action of GL+(2,R), so the
set of holomorphic 1-forms in C with a splitting is nonempty, open, and GL+(2,R)-invariant.
Lemma 5.2 then ensures that every connected component of C(ϕ) contains a holomorphic
1-form (X,ω) with a splitting α±. Let C be the associated cylinder of α±, and let (z, w) be
the associated periods of α±. Since Per(ϕ) ∼= Z2g, there is a unique pair of homology classes
a, b ∈ H1(X;Z) such that

∫
a
ω = z and

∫
b
ω = z. These homology classes have algebraic

intersection a · b = 1, and their periods satisfy an area constraint 0 < Im(zw) < ⟨ϕ, ϕ⟩.
Slitting and regluing α± yields a flat torus and a holomorphic 1-form (X ′, ω′) of genus g−1

with a distinguished geodesic segment s coming from α±. The homology group H1(X
′;Z) is

identified with the symplectic orthogonal {a, b}⊥ ⊂ H1(X;Z) in a way that preserves absolute
periods. Letting C ′ be the stratum component containing (X ′, ω′), there is a cohomology
class ϕ′ ∈ H1(Sg−1;C) such that (X ′, ω′) ∈ C ′(ϕ′), and ϕ′ can be thought of as the restriction
of ϕ to the homology of a subsurface of genus g − 1.

The results in Section 3, along with an inductive hypothesis, will imply that the compo-
nent of C(ϕ) containing (X,ω) contains all holomorphic 1-forms (Y, η) with a splitting whose
associated periods are (z, w). Thus, we have a well-defined surjective function from certain
pairs of periods to connected components of C(ϕ). We need to show that this function is
constant. The results in Section 4 provide a criterion for when two pairs of periods deter-
mine the same component of C(ϕ). This criterion will reduce our connectivity problem to a
delicate algebraic problem, which we will then solve.

Spaces of isoperiodic forms with a fixed splitting. We now formalize the previous
discussion. Fix g ≥ 3. Let ϕ ∈ H1(Sg;C) be a positive cohomology class, and let C
be a connected component of a stratum ΩMg(m1,m2) with m1 ≥ m2. Throughout this
subsection, we make the following additional assumptions.

• We assume that C is a nonhyperelliptic component and that m1,m2 are odd.
• We assume that Per(ϕ) ∼= Z2g and that Per(ϕ) ∩ Rz ⊂ Qz for all z ∈ C.
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Fix z, w ∈ Per(ϕ), and let a, b ∈ H1(Sg;Z) be the unique homology classes such that ϕ(a) = z
and ϕ(b) = w. Suppose that a · b = 1 and that 0 < Im(zw) < ⟨ϕ, ϕ⟩. If m2 ≥ 3, let mC = m2,
and otherwise, let mC = m1. Then we define

C(ϕ, z, w) =
{
(X,ω) ∈ C(ϕ) : (X,ω) has a splitting at a zero of ω of order mC

with associated periods (z, w)

}
.

IfmC = m2, let C ′ = ΩMg−1(m1,m2−2), and ifmC = m1, let C ′ = ΩMg−1(m1−2,m2). Note
that C ′ is connected by Corollary 2.2. Choose a symplectic isomorphism f1 : H1(Sg−1;Z) →
{a, b}⊥. This choice determines a homomorphism H1(Sg−1;Z) → C, c 7→ ϕ(f1(c)), and thus
a cohomology class ϕ′ ∈ H1(Sg−1;C). Different choices yield cohomology classes in the same
orbit under Aut(H1(Sg−1;Z)), so the space C ′(ϕ′) is independent of the choice of f1.

Lemma 6.2. Suppose that C ′(ϕ′) is connected. Then C(ϕ, z, w) is connected.

Proof. Fix (X,ω) ∈ C(ϕ, z, w). Since (X,ω) ∈ C(ϕ), there is a symplectic isomorphism
f : H1(Sg;Z) → H1(X;Z) such that ϕ(c) =

∫
f(c)

ω for all c ∈ H1(Sg;Z). Let α± be

a splitting of (X,ω) at a zero of ω of order mC with associated periods (z, w), and let
a1, b1 ∈ H1(X;Z) be the unique homology classes such that

∫
a1
ω = z and

∫
b1
ω = w. Let

(X ′, ω′) ∈ C ′ be the holomorphic 1-form in genus g− 1 obtained by slitting and regluing α±,
so there is a symplectic isomorphism f2 : H1(X

′;Z) → {a1, b1}⊥ such that
∫
c
ω′ =

∫
f2(c)

ω

for all c ∈ H1(X
′;Z). Since ϕ(a) =

∫
a1
ω and ϕ(b) =

∫
b1
ω, we must have f(a) = a1 and

f(b) = b1, so f restricts to an isomorphism {a, b}⊥ ∼= {a1, b1}⊥. Then the composition
f−1
2 ◦f ◦f1 : H1(Sg−1;Z) → H1(X

′;Z) satisfies ϕ′(c) =
∫
f−1
2 (f(f1(c)))

ω′ for all c ∈ H1(Sg−1;Z),
which means (X ′, ω′) ∈ C ′(ϕ′).
The splitting α± determines a geodesic segment s1 on (X ′, ω′) emanating from a zero of

ω′ of order mC − 2. By Lemma 5.1, the segment s1 is not parallel to any absolute period of
(X ′, ω′). Let I = {tz : 0 ≤ t ≤ 1}. Then any saddle connection γ′ on (X ′, ω′) with holonomy
in I must have distinct endpoints, and the interior of γ′ must be disjoint from s1, so there is
a saddle connection γ on (X,ω) with the same holonomy as γ′. Thus, after replacing (X,ω)
with a nearby holomorphic 1-form in the leaf L(ω), we may assume that Γ(ω′) is disjoint
from I.
Now fix another holomorphic 1-form (Y, η) ∈ C(ϕ, z, w). Let β± be a splitting of (Y, η) at

a zero of order mC with associated periods (z, w), and let (Y ′, η′) ∈ C ′ be the holomorphic
1-form obtained by slitting and regluing β±. As above, we have (Y ′, η′) ∈ C ′(ϕ′), and after
replacing (Y, η) with a nearby holomorphic 1-form in L(η), we may assume that Γ(η′) is
disjoint from I.
By assumption, C ′(ϕ′) is connected, and is therefore a leaf of the absolute period folia-

tion of C ′. We denote this leaf by L. Since Γ(ω′) and Γ(η′) are disjoint from I, we have
(X ′, ω′), (Y ′, η′) ∈ L \L(I), and Lemma 3.6 tells us that there is a path φ : [0, 1] → L \L(I)
from (X ′, ω′) to (Y ′, η′). Let Z1 be the zero of ω′ disjoint from s1, and let Z2 be the other
zero of ω′. As we travel along φ([0, 1]), the zero Z1 moves relative to Z2 while remaining
disjoint from s1. The path φ then determines a path in L(ω) along which the splitting α±

persists, from (X,ω) to a holomorphic 1-form that arises from (Y ′, η′) via a connected sum
with a torus where the splitting has associated periods (z, w). Unfortunately, this is not
enough to ensure that we have a path in L(ω) from (X,ω) to (Y, η), since our connected sum
construction also depends on a choice of prong-marking. However, Lemma 3.2 ensures that
the connected sums from all possible prong-markings of (Y ′, η′) lie on the same leaf.
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To see this, let ΩMg−1(κ
′) be the stratum containing C ′, and consider the stratum cover

p : Ω̃Mg−1(κ
′;mC − 2) → ΩMg−1(κ

′) by prong-marked holomorphic 1-forms from (1). By
Lemmas 5.1 and 5.2, the leaf L contains a holomorphic 1-form whose GL+(2,R)-orbit is

dense in C ′. Then by Lemma 3.2, the preimage L̃ = p−1(L) is a leaf of A(κ′;mC − 2), and
in particular is path-connected. The preimages p−1(X ′, ω′) and p−1(Y ′, η′) are contained in

L̃ \ L̃(I), since saddle connection holonomies do not depend on the choice of prong-marking,

and L̃ \ L̃(I) is also path-connected as indicated below Lemma 3.6. Thus, there is a path in

L̃ \ L̃(I) from any element of p−1(X ′, ω′) to any element of p−1(Y ′, η′).
Now let κ = (m1,m2), and consider the connected sum map Ψ : T (κ′;mC−2) → ΩMg(κ).

There is (X ′, ω̃′) ∈ p−1(X ′, ω′) and (X ′, ω̃′, T1) ∈ Ψ−1(X,ω), where T1 = (γ1, w) and

γ1 ∈ C̃∗
mC−1 is a segment with holonomy z. Similarly, there is (Y ′, η̃′) ∈ p−1(Y ′, η′) and

(Y ′, η̃′, T2) ∈ Ψ−1(Y, η), where T2 = (γ2, w) and γ2 ∈ C̃∗
mC−1 is a segment with holonomy z.

By Corollary 3.9, the leaf of FT through (X ′, ω̃′, T1) is given by (L̃ \ L̃(I))× {T1}, and the

leaf of FT through (Y ′, η̃′, T2) is given by (L̃ \ L̃(I))× {T2}. The path φ : [0, 1] → L \ L(I)
lifts to a path in (L̃ \ L̃(I)) × {T1} from (X ′, ω̃′, T1) to (Y ′, η̃′, T1). Now, by the previous
paragraph, we can replace (Y ′, η̃′) with any other element of p−1(Y ′, η′). This amounts to

changing the choice of prong θ(η̃′), and the angle between different prongs is an integer
multiple of 2π. Also, the angle between γ1 and γ2 is an integer multiple of 2π. If we rotate
the chosen prong on (Y ′, η̃′) by 2π clockwise, and simultaneously rotate the segment γ1 by
2π counterclockwise, then the result of the connected sum construction is unchanged since
the same segment is being slit on the underlying holomorphic 1-form (Y ′, η′). Thus, after

replacing (Y ′, η̃′) with another element of p−1(Y ′, η′), we have Ψ(Y ′, η̃′, T1) = (Y, η). Then

by applying Ψ to a path in (L̃ \ L̃(I)) × {T1} from (X ′, ω̃′, T1) to (Y ′, η̃′, T1), we obtain a
path in C(ϕ, z, w) from (X,ω) to (Y, η). Thus, C(ϕ, z, w) is connected. □

Lemma 6.3. Suppose that Theorem 1.1 is true for C ′. Then every component of C(ϕ)
contains C(ϕ, z′, w′) for some z′, w′ ∈ C.
Proof. Fix (X,ω) ∈ C(ϕ). The connected component of C(ϕ) containing (X,ω) is a leaf L(ω)
of the absolute period foliation of C. By Lemma 5.2, after replacing (X,ω) with a nearby
holomorphic 1-form on L(ω), we may assume that the GL+(2,R)-orbit of (X,ω) is dense in C.
By Lemma 4.2, the set of holomorphic 1-forms in C with a splitting is nonempty, so since this
set is open and GL+(2,R)-invariant, (X,ω) has a splitting α±. Let (z′, w′) be the associated
periods of α±, and let (X ′, ω′) ∈ C ′ be the holomorphic 1-form in genus g − 1 obtained
from (X,ω) by slitting and regluing α±. By Lemma 5.1, we have (X ′, ω′) ∈ C ′(ϕ′) for some
positive ϕ′ ∈ H1(Sg−1;C) satisfying the hypotheses of Theorem 1.1. Then by Lemma 6.2 and
our inductive hypothesis, C(ϕ, z′, w′) is connected, so C(ϕ, z′, w′) is contained in L(ω). □

Lemma 6.4. For all n ∈ Z, we have C(ϕ, z, w) = C(ϕ, z, nz + w).

Proof. This is immediate from the definitions. A splitting with associated periods (z, w)
and a splitting with associated periods (z, nz + w) are the same thing, since the period z
is uniquely determined by the splitting, while the period w depends on the choice of saddle
connection crossing the associated cylinder. Different choices of this saddle connection yield
nz + w in place of w for any n ∈ Z. □

Lemma 6.5. Let a1 ∈ {a, b}⊥ be a primitive homology class, and let z1 = ϕ(a1). If z, w, z1
satisfy the inequalities in (5), then C(ϕ, z, w) ∩ C(ϕ,−z1 − w, z + w) is nonempty.
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Proof. We need to show there exists (X,ω) ∈ C(ϕ) with two splittings whose associated
periods are (z, w) and (−z1 − w, z + w), respectively. The construction in the proof of
Lemma 4.2 provides such a holomorphic 1-form, as follows.

Recall that in the construction in the proof of Lemma 4.2, we first glue a pair of flat
tori T1 = (C/(Zz1 + Zw1), dz) and T2 = (C/(Zz2 + Zw2), dz) along a pair of homologous
saddle connections s± with holonomy u. We then iteratively form connected sums, us-
ing the flat torus T0 = (C/(Zz + Zw), dz) and a segment on T1 with holonomy z, and
then using flat tori Tj = (C/(Zzj + Zwj), dz) and short segments on T2 with holonomy
zj for 3 ≤ j ≤ g − 1. The resulting holomorphic 1-form (X,ω) has a splitting on T1

with associated periods (z, w), and has g − 3 splittings on T2 with associated periods
(z3, w3), . . . , (zg−1, wg−1). Additionally, (X,ω) has a splitting with associated periods (−z1−
w, z+w). The parameters z, w, z1, w1, . . . , zg−1, wg−1, u are local period coordinates, and the
parameters z, w, z1, w1, . . . , zg−1, wg−1 are the periods of a symplectic basis for H1(X;Z).
In the setting of Lemma 6.5, the periods z, w, z1 are given to us, and they satisfy the

inequalities in (5). In particular, the flat torus T0 is determined. The homology classes a, b, a1
determined by z = ϕ(a), w = ϕ(b), and z1 = ϕ(a1) satisfy a · b = 1 and a1 ∈ {a, b}⊥. For the
flat torus T1, we need to choose w1 ∈ Per(ϕ) such that the homology class b1 determined by
w1 = ϕ(b1) satisfies b1 ∈ {a, b}⊥, a1 · b1 = 1, and 0 < Im(zz1) < Im(z1w1) < 1− Im(zw). Fix
b′1 ∈ {a, b}⊥ such that a1 · b′1 = 1. To find the desired w1, it is enough to show the set

V =
{
Im(z1w

′
1) : w

′
1 ∈ ϕ(b′1) + ϕ({a, b, a1, b′1}⊥)

}
is dense in R. Since V is a translate of the abelian group

V1 =
{
Im(z1v) : v ∈ ϕ({a, b, a1, b′1}⊥)

}
,

this is equivalent to showing that V1 is dense in R. If V1 were not dense in R, we would
have V1

∼= Z. Since {a, b, a1, b′1}⊥ has rank 2g − 4 ≥ 2 and Per(ϕ) ∼= Z2g, there would be a
nontrivial Z-linear relation n1 Im(z1ϕ(c1)) + n2 Im(z1ϕ(c2)) = 0 with c1, c2 ∈ {a, b, a1, b′1}⊥
linearly independent. This means n1ϕ(c1)+n2ϕ(c2) ∈ Rz1. However, if n1ϕ(c1)+n2ϕ(c2) = 0,
then Per(ϕ) would have rank less than 2g, and if n1ϕ(c1) + n2ϕ(c2) ̸= 0, then Per(ϕ) ∩ Rz1
would have rank at least 2, contradicting the assumptions on Per(ϕ). Thus, V1 is dense in
R and the desired w1 ∈ Per(ϕ) exists.
Suppose g = 3. Once z, w, z1, w1 are fixed, we can choose z2, w2 ∈ Per(ϕ) to be the periods

of any pair of homology classes a2, b2 such that Za2 + Zb2 = {a, b, a1, b1}⊥ and a2 · b2 = 1.
We have Im(z2w2) = ⟨ϕ, ϕ⟩ − Im(zw)− Im(z1w1) > 0, so we are done in this case.

Suppose g ≥ 4. Once z, w, z1, w1 are fixed, we can choose z2, w2, . . . , zg−1, wg−1 ∈ Per(ϕ)
to be the periods of any symplectic basis a2, b2, . . . , ag−1, bg−1 of {a, b, a1, b1}⊥ such that
Im(zjwj) > 0 for 2 ≤ j ≤ g − 1, such that z3, . . . , zg−1 are small (depending on z2, w2),
and such that z3, . . . , zg−1 are pairwise non-parallel. The conditions on the complex num-
bers z2, w2, . . . , zg−1, zg−1 are open conditions. If mg−2 : H1(Sg−2;Z) → {a, b, a1, b1}⊥ is a
symplectic isomorphism and ϕg−2 ∈ H1(Sg−1;C) satisfies ϕg−2(c) = ϕ(mg−2(c)) for all c ∈
H1(Sg−2;Z), then ϕg−2 is positive and satisfies Per(ϕg−2) ∼= Z2(g−2) and Per(ϕg−2)∩Rz0 ⊂ Qz0
for all z0 ∈ C by Lemma 5.1. In particular, Per(ϕg−2) is dense in C. Thus, Kapovich’s clas-
sification of Sp(2(g − 2),Z)-orbit closures of positive cohomology classes from Lemma 6.1
ensures that such a choice of periods z2, w2, . . . , zg−1, wg−1 is possible. □

Polarized modules. Next, we explain why Lemmas 6.2-6.5 reduce the connectivity of C(ϕ)
to an algebraic problem, and we solve this algebraic problem.
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Let Λ ⊂ C be a subgroup isomorphic to Z2g. A unimodular symplectic form on Λ is a
bilinear map Λ × Λ → Z, (a, b) 7→ a · b, such that there is a symplectic basis {aj, bj}gj=1 for
Λ, meaning aj · bk = −bk · aj = δjk and aj · ak = bj · bk = 0. Following [McM4], a polarized
module is a subgroup Λ ⊂ C isomorphic to Z2g equipped with a unimodular symplectic
form Λ × Λ → Z, (a, b) 7→ a · b, such that

∑g
j=1 Im(ajbj) > 0, where {aj, bj}gj=1 is any

symplectic basis for Λ. If a cohomology class ϕ ∈ H1(Sg;C) is positive and Per(ϕ) ∼= Z2g,
then Per(ϕ) is a polarized module, where the symplectic form is inherited from the algebraic
intersection form on H1(Sg;Z). Any holomorphic 1-form (X,ω) ∈ M(ϕ) has area given
by Area(X,ω) =

∑g
j=1 Im(ajbj). An element a ∈ Λ is primitive if there does not exist

n ∈ Z \ {±1} and a′ ∈ Λ such that a = na′. Equivalently, there exists b ∈ Λ such that
a · b = 1. A submodule V ⊂ Λ is primitive if there does not exist v ∈ Λ \ V and n ∈ Z \ {0}
such that nv ∈ V .
Suppose that for any symplectic basis {aj, bj}gj=1 of Λ, we have

∑g
j=1 Im(ajbj) = 1. Addi-

tionally, suppose that Λ ∩ Rz ⊂ Qz for all z ∈ C. Define
Λ(0,1) = {(a, b) ∈ Λ× Λ : a · b = 1, 0 < Im(ab) < 1} .

Let ϕ ∈ H1(Sg;C) be a positive cohomology class such that Per(ϕ) = Λ as a polarized
module. Then by Lemma 6.2, each pair (z, w) ∈ Λ(0,1) determines a unique connected
component of C(ϕ), namely, the component containing C(ϕ, z, w). By Lemma 6.3, every
component of C(ϕ) contains C(ϕ, z, w) for some (z, w) ∈ Λ(0,1). Let ∼Λ be an equivalence
relation on Λ(0,1) satisfying the following. We suppose that

(a, b) ∼Λ (a, na+ b) (16)

for all (a, b) ∈ Λ(0,1) and all n ∈ Z. We also suppose that

(a, b) ∼Λ (−c− b, a+ b) (17)

for all (a, b) ∈ Λ(0,1) and all primitive c ∈ {a, b}⊥ such that

0 < Im(ac) < 1− Im(ab), 0 < Im(cb) < Im(a(b+ c)). (18)

The above equivalences for ∼Λ are variants of the equivalences for ∼ in (7) and (8) that
take into account the homology classes involved in the constructions in Lemmas 4.1 and 4.2.
In particular, the requirement that c is primitive is imposed because a closed geodesic in a
cylinder is a simple closed curve and thus represents a primitive homology class. By Lemmas
6.4 and 6.5, any two elements of Λ(0,1) that are equivalent with respect to ∼Λ determine the
same component of C(ϕ). We summarize this discussion with the following lemma.

Lemma 6.6. If (a, b) ∼Λ (a′, b′) for all (a, b), (a′, b′) ∈ Λ(0,1), then C(ϕ) is connected.

In order to show that any two elements of Λ(0,1) are equivalent with respect to ∼Λ, it
will be useful to understand which submodules of Λ are dense in C, and to know that the
primitive elements of Λ are dense in C in a strong sense.

Lemma 6.7. Fix g ≥ 3. Let Λ ⊂ C be a polarized module of rank 2g such that Λ∩Rz ⊂ Qz
for all z ∈ C. Every submodule of Λ of rank at least 3 is dense in C.

Proof. It is enough to consider submodules of rank 3. Let V ⊂ Λ be a submodule of rank
3, and write V = V0 + Zz0 where V0 has rank 2. Since V ∩ Rz ⊂ Qz for all z ∈ C, the
submodule V0 is a lattice in C, and z0 /∈

⋃
v∈V0

Rv. If V is not dense in C, then its closure is
given by M · (R+ iZ) with M ∈ SL(2,R). Let n ∈ Z be such that z0 ∈ M · (R+ in). Since
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V0 ⊂ M · (R + iZ) is a lattice, there is a nonzero v ∈ V0 ∩ (M · R), and there is a nonzero
m ∈ Z such that there exists v0 ∈ V0 ∩ (M · (R + im)). Then mz0 − nv0 ∈ Rv, but since
V0 ∩ Zz0 = {0}, we have mz0 − nv0 /∈ Qv, a contradiction. Thus, V is dense in C. □

Lemma 6.8. Let Λ ⊂ C be a polarized module of rank 2g, and let P ⊂ Λ be the subset
of primitive elements. Let V ⊂ Λ be a primitive submodule, and fix a ∈ V . If V is not a
discrete subset of C, then P ∩ (P − a) ∩ V is dense in the closure of V in C.

Proof. Since V is not a discrete subset of C, we must have g ≥ 2. Since V is a primitive
submodule of Λ, an element v ∈ V is a primitive element of Λ if and only if there does
not exist m ∈ Z \ {±1} and v′ ∈ V such that v = mv′. Since V is not a discrete subset
of C, either V is dense in C or the closure of V has the form M · R or M · (R + iZ) with
M ∈ SL(2,R). We will consider cases according to the size of the closure of V . We may
assume that a ̸= 0, since that case implies the case where a = 0.

Case 1: Suppose the closure of V has the form M · R with M ∈ SL(2,R). We may assume
that V is dense in R. Since V has rank at least 2, there is z ∈ V such that a/z /∈ Q. Then

W = {v ∈ V : nv ∈ Za+ Zz for some nonzero n ∈ Z}
is a primitive submodule of rank 2 that contains a and is dense in R. Write a = kz1 with
k ∈ Z and z1 ∈ W primitive, and extend to a basis z1, z2 for W . By rescaling by a nonzero
real number, we may assume that z1 = 1. By replacing z2 with an element of z2 + Z, we
may assume that 0 < z2 < 1.

Fix m ∈ Z. For each prime number p, let np be the unique integer such that m < −np +
pz2 < m+1. Since 0 < z2 < 1, for all but finitely many primes p, we have 0 < np < p−k which
implies gcd(np, p) = 1 and gcd(np+k, p) = 1. Thus, −np+pz2 ∈ W and (−np+pz2)+a ∈ W
are primitive for all but finitely many primes p. Denote by

p1 = 2, p2 = 3, p3 = 5, . . .

the sequence of prime numbers. A theorem of Vinogradov tells us that for any α ∈ R \ Q,
the sequence {pjα}∞j=1 equidistributes in R/Z with respect to the Lebesgue measure [Vin].
In particular, these sequences are dense in R/Z, and therefore

{−np + pz2 : p is prime and sufficiently large} ⊂ P ∩ (P − a) ∩W

is a dense subset of the interval (m,m + 1). Since m was an arbitrary integer, we conclude
that P ∩ (P − a) ∩ V is dense in R.

Case 2: Suppose the closure of V has the form M · (R + iZ) with M ∈ SL(2,R). We may
assume that V is dense in R+ iZ. In this case, V has rank at least 3 and V ∩R has rank at
least 2. Then since V ∩ (R+ i) is dense in R+ i, there is z ∈ V ∩ (R+ i) such that a /∈ Zz.
Choose ℓ ∈ Z such that a − ℓz ∈ R, and write a − ℓz = k1w with k1 ∈ Z and w ∈ V ∩ R
primitive. Since V ∩ R has rank at least 2, there is u ∈ V ∩ R such that u/w /∈ Q. Then

W = {v ∈ V : nv ∈ Zz + Zw + Zu for some nonzero n ∈ Z}
is a primitive submodule of rank 3 that contains a and is dense in R + iZ. Now write
a− ℓz = kz1 with k ∈ Z and z1 ∈ W primitive, and extend to a basis z1, z2 for W ∩ R. We
can extend z1, z2 to a basis z1, z2, z3 for W by choosing z3 ∈ W ∩ (R+ i), so let z3 = z. By
rescaling real parts by a nonzero real number, we may assume that z1 = 1, while preserving
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the density of W in R+ iZ. By replacing z2 with an element of z2 +Z, we may assume that
0 < z2 < 1.

Fix m,n ∈ Z. For each prime number p, let np be the unique integer such that m <
−np + pz2 < m + 1. Then −np + pz2 + nz3 lies in the translated interval (0, 1) +m + nz3,
and since z3 ∈ R + i, the union of these translated intervals (over all m,n ∈ Z) is dense in
R + iZ. Recall that a = kz1 + ℓz3. Since 0 < z2 < 1, for all but finitely many primes p, we
have 0 < np < p − k which implies gcd(np, p, n) = 1 and gcd(np + k, p, n + ℓ) = 1. Thus,
−np + pz2 + nz3 ∈ W and (−np + pz2 + nz3) + a ∈ W are primitive for all but finitely many
primes p. As in Case 1, since z2 /∈ Q, Vinogradov’s theorem implies {pjz2}∞j=1 is dense in
R/Z, and therefore

{−np + pz2 + nz3 : p is prime and sufficiently large} ⊂ P ∩ (P − a) ∩W

is a dense subset of (0, 1)+m+nz3. Thus, sincem and n were arbitrary integers, P∩(P−a)∩V
is dense in R+ iZ.

Case 3: Lastly, suppose V is dense in C. In this case, V has rank at least 3. The set of
z ∈ V such that z /∈ Ra is dense in C. Fix z ∈ V such that z /∈ Ra, and fix w ∈ V such that
Za+ Zz + Zw has rank 3. Then

W = {v ∈ V : nv ∈ Za+ Zz + Zw for some nonzero n ∈ Z}
is a primitive submodule of rank 3 that contains a. Since z is an arbitrary element of V \Ra,
the union of the rank 3 primitive submodules containing a is dense in C, so it is enough
to show that P ∩ (P − a) ∩ W is dense in the closure of W in C. If W is not dense in C,
then since W contains a lattice and is not discrete, W is dense in M · (R + iZ) for some
M ∈ SL(2,R). Case 2 then tells us that P ∩ (P − a) ∩W is dense in M · (R + iZ). Thus,
we may assume that W is dense in C. Write a = kz1 with k ∈ Z and z1 ∈ W primitive, and
extend to a basis z1, z2, z3 for W . Since W is dense in C, it must be that z2 /∈ Rz1. Then
W0 = Zz1 + Zz2 is a lattice in C. By applying an element of GL(2,R), we may assume that
z1 = 1 and z2 = i. Then, by replacing z3 with an element of z3 + Z + Zi, we may assume
that z3 lies in the open unit square (0, 1) + (0, 1)i. Write z3 = x+ iy with 0 < x, y < 1.
Fix m,n ∈ Z. For each prime number p, let mp, np be the unique integers such that

−mp − npi + pz3 lies in the square (0, 1) + (0, 1)i + m + ni. The union of these squares is
dense in C. Since 0 < x, y < 1, for all but finitely many primes p, we have 0 < mp, np < p−k
which implies gcd(mp, np, p) = 1 and gcd(mp + k, np, p) = 1. Thus, −mp − npi + pz3 ∈ W
and (−mp − npi + pz3) + a ∈ W are primitive for all but finitely many primes p. Since W
is dense in C, the projection of Zz3 to the torus C/(Z+ Zi) is dense, which is equivalent to
1, x, y being Q-linearly independent. The set

{−mp − npi+ pz3 : p is prime and sufficiently large} ⊂ P ∩ (P − a) ∩W

is dense in (0, 1) + (0, 1)i + m + ni if and only if {pjz3}∞j=1 projects to a dense subset of
C/(Z+ Zi).

As in Case 1, the sequence {pjz3}∞j=1 equidistributes in C/(Z + Zi) with respect to the

Lebesgue measure. To see this, we identify C/(Z+Zi) with R2/Z2 and recall Weyl’s equidis-
tribution criterion, which in our case says that a sequence {(sj, tj)}∞j=1 in R2/Z2 equidis-

tributes if and only if for all nonzero (k1, k2) ∈ Z2, we have 1
N

∑N
j=1 exp(2πi(k1sj+k2tj)) → 0

as N → ∞. Equivalently, the sequences {k1sj + k2tj}∞j=1 equidistribute in R/Z. Since
1, x, y are Q-linearly independent, Vinogradov’s equidistribution theorem implies that for
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all nonzero (k1, k2) ∈ Z2, the sequence {pj(k1x + k2y)}∞j=1 equidistributes in R/Z. Thus,
{pjz3}∞j=1 equidistributes in C/(Z + Zi). Since m and n were arbitrary integers, we are
done. □

Lemma 6.9. Fix g ≥ 3. Let Λ ⊂ C be a polarized module of rank 2g such that Λ∩Rz ⊂ Qz
for all z ∈ C. Then every equivalence class for ∼Λ is dense in T(0,1).

Proof. Fix (z, w) ∈ Λ(0,1). Recall the equivalence relation ∼ on T(0,1) defined in Section 4. By
Lemma 4.3, for all (z′, w′) ∈ T(0,1), we have (z, w) ∼ (z′, w′). This means there is a sequence
of pairs

(z, w) = (z1, w1), (z2, w2), . . . , (zN , wN) = (z′, w′) ∈ T(0,1)

such that for 1 ≤ j ≤ N − 1, either (zj+1, wj+1) = (zj, njzj + wj) for some nj ∈ Z, or
(zj+1, wj+1) = (−z1,j −wj, zj +wj) for some z1,j ∈ C such that zj, wj, z1,j satisfy the inequal-
ities in (5).

If (z2, w2) = (z1, n1z1 + w1) for some n1 ∈ Z, then (z2, w2) ∈ Λ(0,1) as well. Otherwise,
(z2, w2) = (−z1,1−w1, z1+w1) for some z1,1 ∈ C such that z1, w1, z1,1 satisfy the inequalities
in (5). We have z1 + w1 ∈ Λ, and since the inequalities in (18) are open conditions, we can
replace z1,1 with any sufficiently close primitive element of {z1, w1}⊥. Lemmas 6.7 and 6.8
ensure that primitive elements in {z1, w1}⊥ are dense in C, so there exist primitive elements
z′1,1 ∈ {z1, w1}⊥ arbitrarily close to z1,1. Letting (z′2, w

′
2) = (−z′1,1 − w1, z1 + w1), we have

(z1, w1) ∼Λ (z′2, w
′
2) and (z′2, w

′
2) is close to (z2, w2).

We can iterate this argument with (zj, wj) for 3 ≤ j ≤ N to obtain a nearby element
(z′j, w

′
j) ∈ Λ(0,1) such that (z′j−1, w

′
j−1) ∼Λ (z′j, w

′
j). Thus, the equivalence class of (z, w) for

∼Λ is dense in T(0,1). □

With our various density properties established, we are now ready to prove that Λ(0,1)

consists of a single equivalence class with respect to ∼Λ.

Lemma 6.10. Fix g ≥ 3. Let Λ ⊂ C be a polarized module of rank 2g such that Λ∩Rz ⊂ Qz
for all z ∈ C. Then for all (a, b), (c, d) ∈ Λ(0,1), we have (a, b) ∼Λ (c, d).

Proof. By Lemma 6.7, every submodule of Λ of rank at least 3 is dense in C. By Lemma 6.9,
every equivalence class for ∼Λ is dense in T(0,1), so it is enough to show that (a, b) ∼Λ (c, d)
for all (a, b) ∈ Λ(0,1) and (c, d) ∈ Λ(0,1) sufficiently close to (1/2, i/2). Fix ε > 0 small, and
fix (a, b) ∈ Λ(0,1) such that |a− 1/2| < ε and |b− i/2| < ε.
Applying the relations in (17) twice, we see that for all primitive a1 ∈ {a, b}⊥ such that

|a1 − (a+ b)| < 4ε and all primitive a2 ∈ {−a1 − b, a+ b}⊥ such that |a2 + b| < 4ε,

(a, b) ∼Λ (−a1 − b, a+ b) ∼Λ (−a2 − a− b,−a1 + a).

We will bootstrap from this observation in several steps.

Step 1a. Fix b1 ∈ b⊥ such that a · b1 = 1 and |b1 − i/2| < ε. We will show that (a, b) ∼Λ

(a, b1). The submodule {a, b, b1}⊥ is primitive and has rank at least 2g − 3 ≥ 3. Then since
|b − b1| < 2ε, by Lemmas 6.7 and 6.8 there exists a primitive a1 ∈ {a, b, b1}⊥ such that
|a1 − (a+ b)| < 2ε and |a1 − (a+ b1)| < 2ε. The relation

(−a1 − b) + (a+ b) = (−a1 − b1) + (a+ b1) (19)

implies that the primitive submodule V1 = {−a1 − b, a + b,−a1 − b1, a + b1}⊥ has rank at
least 2g − 3 ≥ 3. Since b1 − b ∈ V1, by Lemmas 6.7 and 6.8 there exists a2 ∈ V1 such that
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|a2 + b| < 2ε and such that both a2 and a′2 = a2 + b− b1 are primitive. We have a′2 ∈ V1 and
|a′2 + b| < 4ε. Thus, since V1 = {−a1 − b, a+ b}⊥ ∩ {−a1 − b1, a+ b1}⊥, we have

(a, b) ∼Λ (−a2 − a− b,−a1 + a) = (−a′2 − a− b1,−a1 + a) ∼Λ (a, b1).

Step 1b. Fix b3 ∈ Λ such that a · b3 = 1 and |b3 − i/2| < ε. We will find b1, b2 ∈ Λ such
that b1 ∈ b + {a, b}⊥, b2 ∈ b1 + {a, b1}⊥, b3 ∈ b2 + {a, b2}⊥, and such that |b1 − i/2| < ε,
|b2 − i/2| < ε. Step 1a then implies (a, b) ∼Λ (a, b1) ∼Λ (a, b2) ∼Λ (a, b3).

Write b3 = ka+b+c3 with k ∈ Z and c3 ∈ {a, b}⊥. We may assume k ̸= 0, since otherwise
b3 ∈ b+{a, b}⊥ and then (a, b) ∼Λ (a, b3) by Step 1a. Since {a, b, c3}⊥ is a primitive submod-
ule of rank at least 2g − 3 ≥ 3, by Lemmas 6.7 and 6.8 there is a primitive c2 ∈ {a, b, c3}⊥
such that |ka+b+c2−i/2| < ε. Letting b2 = ka+b+c2, we have |b2−i/2| < ε, a ·b2 = 1, and
b3 · b2 = c3 · c2 = 0, so b3 ∈ b2 + {a, b2}⊥. Since c2 ∈ {a, b}⊥ is primitive, there is d2 ∈ {a, b}⊥
such that c2 · d2 = 1. Since d2 + {a, b, c2}⊥ is a translate of a submodule of rank at least
2g − 3 ≥ 3, by Lemma 6.7 there is e ∈ {a, b, c2}⊥ such that |b − kd2 + e − i/2| < ε. Let
c1 = −kd2 + e, and let b1 = b+ c1, so |b1 − i/2| < ε. We have a · b1 = 1 and c1 ∈ {a, b}⊥, so
b1 ∈ b + {a, b}⊥. Lastly, since b2 · b1 = k + c2 · c1 = 0, we have b2 ∈ b1 + {a, b1}⊥. Thus, by
applying Step 1a three times, we get (a, b) ∼Λ (a, b3).

Step 2a. Fix a1 ∈ a⊥ such that a1 ·b = 1 and |a1−1/2| < ε. An argument similar to Step 1a
will show that (a, b) ∼Λ (a1, b). Since the primitive submodule {a, b, a1}⊥ has rank at least
2g−3 ≥ 3, and since a1−a ∈ {a, b, a1}⊥, by Lemmas 6.7 and 6.8 there exists a′1 ∈ {a, b, a1}⊥
such that |a′1 − (a+ b)| < 2ε and such that both a′1 and a′′1 = a′1 + a1 − a are primitive. We
have a′′1 ∈ {a, b, a1}⊥ and |a′′1 − (a+ b)| < 4ε. The relations

(−a′1 − b) + (a+ b) = −a′1 + a = −a′′1 + a1 = (−a′′1 − b) + (a1 + b) (20)

imply the primitive submodule V2 = {−a′1 − b, a + b,−a′′1 − b, a1 + b}⊥ has rank at least
2g − 3 ≥ 3. Since a1 − a ∈ V2, by Lemmas 6.7 and 6.8 there exists a2 ∈ V2 such that
|a2+ b| < 2ε and such that both a2 and a′2 = a2+ a− a1 are primitive. We have a′2 ∈ V2 and
|a′2 + b| < 4ε. Thus, since V2 = {−a′1 − b, a+ b}⊥ ∩ {−a′′1 − b, a1 + b}⊥, we have

(a, b) ∼Λ (−a2 − a− b,−a′1 + a) = (−a′2 − a1 − b,−a′′1 + a1) ∼Λ (a1, b).

Step 2b. Fix a3 ∈ Λ such that a3 · b = 1 and |a3 − 1/2| < ε. This step is the same as Step
1b with the roles of a and b exchanged. Write a3 = a+ kb+ c3 with k ∈ Z and c3 ∈ {a, b}⊥.
We assume k ̸= 0, otherwise we are done by Step 2a. Using Lemmas 6.7 and 6.8, choose
a primitive c2 ∈ {a, b, c3}⊥ such that a2 = a + kb + c2 satisfies |a2 − 1/2| < ε. Choose
d2 ∈ {a, b}⊥ such that c2 · d2 = 1, and use Lemma 6.7 to choose e ∈ {a, b, c2}⊥ such that
a1 = a + k(d2 + e) satisfies |a1 − 1/2| < ε. Then a1 ∈ a + {a, b}⊥, a2 ∈ a1 + {a1, b}⊥, and
a3 ∈ a2 + {a2, b}⊥, and thus by Step 2a, (a, b) ∼Λ (a3, b).

Step 3. In the previous steps, we showed that (a, b) ∼Λ (a, b′) for all b′ ∈ b + a⊥ with
|b′ − i/2| < ε, and that (a, b) ∼Λ (a′, b) for all a′ ∈ a+ b⊥ with |a′ − 1/2| < ε.

To conclude, fix (c, d) ∈ Λ(0,1) such that |c−1/2| < ε and |d−i/2| < ε. Choose b1 ∈ Λ such
that a · b1 = 1. Since a · b1 = 1, there are m,n ∈ Z such that d−ma− nb1 ∈ {a, b1}⊥. Write
d −ma − nb1 = pa2 with p ∈ Z and a2 ∈ {a, b1}⊥ primitive, and choose b2 ∈ {a, b1}⊥ such
that a2 ·b2 = 1. Since d is primitive, gcd(m,n, p) = 1, so there are integers k1, k2, k3 such that
−k1m+k2n−k3p = n+1. Letting b′ = b1+b2, and letting c′ = (k2−1)a+k1b1−(k2−2)a2+k3b2,
we have a · b′ = c′ · b′ = c′ · d = 1. Lastly, by Lemma 6.7 there is b′′ ∈ b′ + {a, c′}⊥ such that
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|b′′ − i/2| < ε. Similarly, there is c′′ ∈ c′ + {b′′, d}⊥ such that |c′′ − 1/2| < ε. We then have
a · b′′ = c′′ · b′′ = c′′ · d = 1, so (a, b′′), (c′′, b′′), (c′′, d) ∈ Λ(0,1), and thus

(a, b) ∼Λ (a, b′′) ∼Λ (c′′, b′′) ∼Λ (c′′, d) ∼Λ (c, d).

□

We have now established Theorem 1.1 in the case of strata with two zeros.

Theorem 6.11. Fix g ≥ 3. Let C be the nonhyperelliptic component of a stratum ΩMg(m1,m2)
with m1,m2 odd. If ϕ ∈ H1(Sg;C) is a positive cohomology class such that Per(ϕ) ∼= Z2g

and Per(ϕ) ∩ Rz ⊂ Qz for all z ∈ C, then C(ϕ) is connected.
Proof. By scaling by a positive real number, we may assume that ⟨ϕ, ϕ⟩ = 1. Let Λ be the
polarized module Per(ϕ). By Lemma 6.10, any two elements of Λ(0,1) are equivalent with
respect to ∼Λ. Therefore, C(ϕ) is connected by Lemma 6.6. □

Theorem 6.12. Fix g ≥ 3. Let C be a connected stratum ΩMg(κ) with |κ| > 1, and
suppose that m ≥ 2 for some m ∈ κ. Fix 1 ≤ j < m, let κ′ = (κ \ (m)) ∪ (m− j, j), and let
C ′ = ΩMg(κ

′). Let ϕ ∈ H1(Sg;C) be a positive cohomology class such that Per(ϕ) ∼= Z2g

and Per(ϕ) ∩ Rz ⊂ Qz for all z ∈ C. If C(ϕ) is connected, then C ′(ϕ) is connected.

Proof. By Corollary 2.2, since C is connected, C ′ is connected. Fix (X1, ω1), (X2, ω2) ∈ C ′(ϕ).
By Lemma 5.2, after replacing (Xj, ωj) with a nearby holomorphic 1-form in L(ωj), we
may assume that the GL+(2,R)-orbit of (Xj, ωj) is dense in C ′. The image of the zero
splitting map Φ : S(κ;m) → C ′ is nonempty, open, and GL+(2,R)-invariant, and therefore
dense. Since splitting zeros does not change the absolute periods, we can write (Xj, ωj) =
Φ(X ′

j, ω̃
′
j, γj) with (X ′

j, ω
′
j) ∈ C(ϕ). By assumption, C(ϕ) is connected, so (X ′

1, ω
′
1) and

(X ′
2, ω

′
2) lie on the same leaf of A(κ). By Lemma 5.2, the leaves L(ω′

j) contain holomorphic

1-forms whose GL+(2,R)-orbits are dense in C, so by Lemma 3.2, (X ′
1, ω̃

′
1) and (X ′

2, ω̃
′
2) lie

on the same leaf of A(κ;m). Then by Lemma 3.3, (X ′
1, ω̃

′
1, γ1) and (X ′

2, ω̃
′
2, γ2) lie on the

same leaf of FS . Since Φ maps leaves of FS into leaves of A(κ′), we conclude that (X1, ω1)
and (X2, ω2) lie on the same leaf of A(κ′). Thus, C ′(ϕ) is connected. □

We now complete the proof of Theorem 1.1.

Proof. (of Theorem 1.1) Induct on |κ|, using Theorem 6.11 for the base case |κ| = 2, and
using Lemma 2.5 and Theorem 6.12 for the inductive step. □

Absolute periods in R+ iZ. We now prove Theorem 1.3, following a similar approach to
Theorem 1.1. Fix g ≥ 3, let ϕ ∈ H1(Sg;C) be a positive cohomology class with Per(ϕ) ∼= Z2g

not dense in C, and let C be a nonhyperelliptic component of a stratum ΩMg(m1,m2) with
m1 ≥ m2 odd. The closure of Per(ϕ) in C has the form M · (R + iZ) with M ∈ SL(2,R).
Fix z, w ∈ Per(ϕ) such that z /∈ M ·R. Let a, b ∈ H1(Sg;Z) be the unique homology classes
such that z = ϕ(a) and w = ϕ(b). Suppose that a · b = 1 and that 0 < Im(zw) < ⟨ϕ, ϕ⟩. If
m2 ≥ 3, let mC = m2, and otherwise, let mC = m1. Define

C(ϕ, z, w) =
{
(X,ω) ∈ C(ϕ) : (X,ω) has a splitting at a zero of ω of order mC

with associated periods (z, w)

}
.

If mC = m2, let C ′ = ΩMg−1(m1,m2−2), and if mC = m1, let C ′ = ΩMg−1(m1−2,m2), so C ′

is connected by Corollary 2.2. Let ϕ′ ∈ H1(Sg−1;C) be a positive cohomology class such that
Per(ϕ′) = ϕ({a, b}⊥) as a polarized module. Since g ≥ 3 and ϕ′ is positive, Per(ϕ′) ∼= Z2(g−1)

is dense in M · (R+ inZ) for some n ∈ Z>0.
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Lemma 6.13. Suppose that C ′(ϕ′) is connected. Then C(ϕ, z, w) is connected.

Proof. The proof is the same as that of Lemma 6.2, with Lemmas 5.3 and 5.4 in place of
Lemmas 5.1 and 5.2, respectively. □

Lemma 6.14. Suppose that Theorem 1.3 is true for C ′. Then every component of C(ϕ)
contains C(ϕ, z′, w′) for some z′, w′ ∈ C.

Proof. The proof is the same as that of Lemma 6.3, with Lemmas 5.3, 5.4, and 6.13 in place
of Lemmas 5.1, 5.2, and 6.2, respectively. □

Lemma 6.15. For all n ∈ Z, we have C(ϕ, z, w) = C(ϕ, z, nz + w).

Proof. This is immediate from the definitions, as in Lemma 6.4. □

Lemma 6.16. Let a1 ∈ {a, b}⊥ be a primitive homology class, and let z1 = ϕ(a1). Suppose
that z, w, z1 satisfy the inequalities in (5). If z1 ∈ M · R, suppose additionally that there
is b1 ∈ {a, b}⊥ such that a1 · b1 = 1 and such that w1 = ϕ(b1) satisfies 0 < Im(zz1) <
Im(z1w1) < 1− Im(zw). Then C(ϕ, z, w) ∩ C(ϕ,−z1 − w, z + w) is nonempty.

Proof. We may assume Per(ϕ) is dense in R+ iZ. The construction in the proof of Lemma
4.4 provides holomorphic 1-forms (X,ω) ∈ C(ϕ) with two splittings whose associated periods
are (z, w) and (−z1 − w, z + w), respectively, as follows.

Recall that we first glue a pair of flat tori T1 = (C/(Zz1 + Zw1), dz) and T2 = (C/(Zz2 +
Zw2), dz) along a pair of homologous saddle connections, and then iteratively form connected
sums, first using the flat torus T0 = (C/(Zz + Zw), dz) and a segment in T1 with holonomy
z, and then using flat tori Tj = (C/(Zzj + Zwj), dz) and short horizontal segments on T2

with holonomy zj for 3 ≤ j ≤ g − 1.
The periods z, w, z1 are given to us. We need to choose w1 ∈ Per(ϕ) such that the homology

class b1 determined by w1 = ϕ(b1) satisfies b1 ∈ {a, b}⊥, a1 · b1 = 1, and 0 < Im(zz1) <
Im(z1w1) < 1 − Im(zw). If z1 ∈ R, then the desired w1 exists by assumption, so suppose
z1 /∈ R. Fix b′1 ∈ {a, b}⊥ such that a1 · b′1 = 1. Since z1 /∈ R, we have Per(ϕ) ∩ Rz1 ⊂ Qz1.
Then as in the proof of Lemma 6.5, the set

V = {Im(z1w
′
1) : w

′
1 ∈ ϕ(b′1) + ϕ({a, b, a1, b′1}⊥)}

is dense in R. Thus, the desired w1 ∈ Per(ϕ) exists.
If g = 3, then once z, w, z1, w1 are fixed, we can choose z2, w2 ∈ Per(ϕ) to be the periods

of any pair of homology classes such that Za2+Zb2 = {a, b, a1, b1}⊥ and a2 · b2 = 1. If g ≥ 4,
then we can choose z2, w2, . . . , zg−1, wg−1 ∈ Per(ϕ) to be the periods of any symplectic basis
of {a, b, a1, b1}⊥ such that Im(zjwj) > 0 for 2 ≤ j ≤ g − 1 and such that z3, . . . , zg−1 ∈
R>0 are short (depending on z2, w2). Since the conditions on the real parts of the periods
z2, w2, . . . , zg−1, wg−1 are open conditions, as in the proof of Lemma 6.5, the R + iZ case of
Kapovich’s classification of Sp(2(g− 2),Z)-orbit closures from Lemma 6.1 ensures that such
a choice of z2, w2, . . . , zg−1, wg−1 is possible. □

Suppose Λ is a polarized module of rank 2g that is not dense in C, such that for any
symplectic basis {aj, bj}gj=1 of Λ, we have

∑g
j=1 Im(ajbj) = 1. The closure of Λ in C is given

by M · (R+ iZ) for some M ∈ SL(2,R). Let Λ0 = Λ ∩ (M · R). Define

Λ(0,1) = {(a, b) ∈ (Λ \ Λ0)× Λ : a · b = 1, 0 < Im(ab) < 1} .
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Let ∼Λ be an equivalence relation on Λ(0,1) satisfying the following. We suppose that

(a, b) ∼Λ (a, na+ b) (21)

for all (a, b) ∈ Λ(0,1) and all n ∈ Z. We suppose that

(a, b) ∼Λ (−c− b, a+ b) (22)

for all (a, b) ∈ Λ(0,1) and all primitive c ∈ {a, b}⊥ \ Λ0 satisfying the inequalities in (18) and
such that −c− b /∈ Λ0. Lastly, we suppose that

(a, b) ∼Λ (−c− b, a+ b) (23)

for all (a, b) ∈ Λ(0,1) with b /∈ Λ0 and all primitive c ∈ Λ0 ∩ {a, b}⊥ such that a, b, c satisfy
the inequalities in (18) and such that there is d ∈ {a, b}⊥ satisfying c · d = 1 and

0 < Im(ac) < Im(cd) < 1− Im(ab). (24)

Let ϕ ∈ H1(Sg;C) be a positive cohomology class such that Per(ϕ) = Λ as a polarized
module. As in the previous subsection, Lemmas 6.13-6.16 reduce the connectivity of C(ϕ)
to the following algebraic problem.

Lemma 6.17. If (a, b) ∼Λ (a′, b′) for all (a, b), (a′, b′) ∈ Λ(0,1), then C(ϕ) is connected.

We will need the following analogous density results to Lemmas 6.7 and 6.9. If Λ is dense
in M · (R+ iZ) with M ∈ SL(2,R), then we have an inclusion

JΛ : Λ(0,1) → T M ·(R+iZ)
(0,1) , JΛ(z, w) = (z, w, n),

where n ∈ Z>0 is the unique integer such that {z, w}⊥ is dense in M · (R+ inZ).

Lemma 6.18. Fix g ≥ 3. Let Λ ⊂ C be a polarized module of rank 2g such that Λ is not
dense in C, so Λ is dense in M · (R+ iZ) for some M ∈ SL(2,R). If V ⊂ Λ is a submodule
of rank at least 3, then V is dense in M · (R+ inZ) for some n ∈ Z≥0.

Proof. It is enough to show that V ∩ (M ·R) is dense in M ·R. Since V has rank at least 3,
V ∩ (M · R) has rank at least 2, and therefore V ∩ (M · R) is dense in M · R. □

Lemma 6.19. Fix g ≥ 3. Let Λ ⊂ C be a polarized module of rank 2g such that Λ is
not dense in C, so Λ is dense in M · (R + iZ) for some M ∈ SL(2,R). The image of any

equivalence class for ∼Λ under JΛ is dense in T M ·(R+iZ)
(0,1) .

Proof. The proof is similar to that of Lemma 6.9. We may assume that Λ is dense in R+ iZ.
Fix (z, w) ∈ Λ(0,1), so JΛ(z, w) = (z, w, n) ∈ T R+iZ

(0,1) for some n ∈ Z>0. For all k ∈ Z, we have
(z, kz+w) ∈ Λ(0,1), and since {z, kz+w}⊥ = {z, w}⊥, we have JΛ(z, kz+w) = (z, kz+w, n).
Fix z1 ∈ (R+inZ)\R such that Im(−z1−w) ̸= 0 and such that z, w, z1 satisfy the inequalities
in (5). Since {z, w}⊥ is dense in R + inZ, by Lemma 6.8 there is a primitive z′1 ∈ {z, w}⊥
close to z1. Then z, w, z′1 satisfy the inequalities in (18), and −z′1 − w /∈ Λ0, so we have
(z, w) ∼Λ (−z′1 −w, z +w). Lastly, suppose w /∈ Λ0, and fix z1 ∈ R such that z, w, z1 satisfy
the inequalities in (5) and such that there is w1 ∈ R+ inZ satisfying the inequalities in (13).
By Lemma 6.8, there is a primitive w′

1 ∈ {z, w}⊥ close to w1. Then there is z′0 ∈ {z, w}⊥ such
that z′0 ·w′

1 = 1. Moreover, z′0+ {z, w, w′
1}⊥ is a translate of a submodule of rank 2g− 3 ≥ 3,

so it intersects R in a dense subset of R. Thus, there is z′1 ∈ (z′0 + {z, w, w′
1}⊥) ∩ R close to

z1. Then z′1 ·w′
1 = 1 and since the inequalities in (13) are open conditions, z′1 and w′

1 satisfy
the inequalities in (24). Thus, (z, w) ∼Λ (−z′1 − w, z + w). Following the proof of Lemma
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6.9 with Lemma 4.5 in place of Lemma 4.3, we conclude that the image of the equivalence
class of (z, w) for ∼Λ under JΛ is dense in T R+iZ

(0,1) . □

Lemma 6.20. Fix g ≥ 3, and let Λ ⊂ C be a polarized module of rank 2g such that Λ is
not dense in C. For all (a, b) ∈ Λ(0,1) and (c, d) ∈ Λ(0,1), we have (a, b) ∼Λ (c, d).

Proof. We may assume that Λ is dense in R + iZ. By Lemma 6.18, any submodule of Λ of
rank at least 3 is dense in R + inZ for some n ∈ Z≥0. By Lemma 6.19, the image of any
equivalence class for ∼Λ under JΛ is dense in T R+iZ

(0,1) . Fix ε1 > 0 small, and fix 0 < ε < ε1/100.

It is enough to show that (a, b) ∼Λ (c, d) for all (a, b) ∈ Λ(0,1) and (c, d) ∈ Λ(0,1) sufficiently
close to (i,−ε1) such that {a, b}⊥ and {c, d}⊥ are dense in R + iZ. We will do this using a
similar strategy to the proof of Lemma 6.10. Fix (a, b) ∈ Λ(0,1) such that |a − i| < ε and
|b+ ε1| < ε, and such that {a, b}⊥ is dense in R+ iZ.
Fix ε2, ε3 > 0 such that ε1 + 10ε < ε2 < 2ε1 − 10ε and ε1 < ε3 < 2ε1. Additionally, fix

b1 ∈ b⊥ such that a · b1 = 1 and |b1 + (ε1 − i)| < ε. Applying the relations in (22) twice, we
see that for all primitive a1 ∈ {a, b}⊥ such that |a1 + (ε2 − 2i)| < 4ε, and for all primitive
a2 ∈ {−a1 − b, a+ b}⊥ such that |a2 − (ε3 + 2i)| < 4ε,

(a, b) ∼Λ (−a1 − b, a+ b) ∼Λ (−a2 − a− b,−a1 + a).

Similarly, for all primitive a1 ∈ {a, b1}⊥ such that |a1 + (ε2 − 2i)| < 4ε, and for all primitive
a′2 ∈ {−a1 − b1, a+ b1}⊥ such that |a′2 − (ε3 + i)| < 4ε,

(a, b1) ∼Λ (−a1 − b1, a+ b1) ∼Λ (−a′2 − a− b1,−a1 + a).

Step 1a. Recall that b1 ∈ b⊥ is such that a · b1 = 1 and |b1+(ε1− i)| < ε. We will show that
(a, b) ∼Λ (a, b1). Since {a, b, b1}⊥ ∩ R has rank at least 2g − 4 ≥ 2, it is dense in R. Then
since b1 − b ∈ {a, b, b1}⊥ ∩ (R + i), the primitive submodule {a, b, b1}⊥ is dense in R + iZ.
Then by Lemma 6.8, there is a primitive a1 ∈ {a, b, b1}⊥ such that |a1 + (ε2 − 2i)| < ε. The
primitive submodule V1 = {−a1 − b, a + b,−a1 − b1, a + b1}⊥ has rank at least 2g − 3 ≥ 3
by the relation in (19), and since b1 − b ∈ V1 ∩ (R + i), we see that V1 is dense in R + iZ.
Then by Lemma 6.8, there is a2 ∈ V1 such that |a2 − (ε3 + 2i)| < ε and such that both a2
and a′2 = a2 + b − b1 are primitive. Note that a′2 ∈ V1 and that |a′2 − (ε3 + i)| < 3ε. Since
V1 = {−a1 − b, a+ b}⊥ ∩ {−a1 − b1, a+ b1}⊥, we have

(a, b) ∼Λ (−a2 − a− b,−a1 + a) = (−a′2 − a− b1,−a1 + a) ∼Λ (a, b1).

Step 1b. Fix b4 ∈ Λ such that a · b4 = 1, |b4 + ε1| < ε, and {a, b4}⊥ is dense in R + iZ.
We will find b1, b2, b3 ∈ Λ such that b1 ∈ b + {a, b}⊥, b2 ∈ b1 + {a, b1}⊥, b3 ∈ b2 + {a, b2}⊥,
b4 ∈ b3 + {a, b3}⊥, and such that |b1 + (ε1 − i)| < ε, |b2 + ε1| < ε, |b3 + (ε1 − i)| < ε. Step 1a
then implies (a, b) ∼Λ (a, b1) ∼Λ (a, b2) ∼Λ (a, b3) ∼Λ (a, b4).
First, fix b2 ∈ Λ such that a · b2 = 1, |b2 + ε1| < ε, and {a, b2}⊥ is dense in R + iZ.

Additionally, suppose that b2 = k2a + b + c2 with k2 ∈ Z, c2 ∈ {a, b}⊥ primitive, and
{a, b, c2}⊥ dense in R + iZ. Since c2 ∈ {a, b}⊥ is primitive, there is d2 ∈ {a, b}⊥ such
that c2 · d2 = 1. Since {a, b, c2}⊥ is dense in R + iZ, there is e ∈ {a, b, c2}⊥ such that
|b − k2d2 + e + (ε1 − i)| < ε. Let c1 = −k2d2 + e ∈ {a, b}⊥, and let b1 = b + c1. We have
|b1+(ε1−i)| < ε and b1 ∈ b+{a, b}⊥. Since b2 ·b1 = k2+c2 ·c1 = 0, we have b2 ∈ b1+{a, b1}⊥.
Thus, applying Step 1a twice gives us (a, b) ∼Λ (a, b1) ∼Λ (a, b2).

Now write b4 = k4a + b + c4 with k4 ∈ Z and c4 ∈ {a, b}⊥. By the previous paragraph,
it is enough to find k2 ∈ Z and c2 ∈ {a, b}⊥ primitive, such that b2 = k2a + b + c2 satisfies
|b2+ε1| < ε and {a, b, c2}⊥ is dense in R+iZ, and such that b4 = k′

4a+b2+c′4 with k′
4 ∈ Z and
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c′4 ∈ {a, b2}⊥ primitive and {a, b2, c′4}⊥ dense in R+iZ. Note that k′
4 = b4·b2 = k4−k2+(c4·c2),

from which it follows that

c′4 = c4 − c2 − (c4 · c2)a.
Since c2 ∈ {a, b}⊥ is primitive, {a, b, c2}⊥ is dense in R + iZ if and only if there is d2 ∈
{a, b}⊥∩R such that c2·d2 = 1. We have {a, b2, c′4}⊥ = {a, b+c4, c

′
4}⊥, so since c′4 ∈ {a, b+c4}⊥

is primitive, {a, b + c4, c
′
4}⊥ is dense in R + iZ if and only if there is d′4 ∈ {a, b + c4}⊥ ∩ R

such that c′4 · d′4 = 1.
By Lemma 6.1, since {a, b}⊥ is dense in R+ iZ, there is a symplectic basis x2, y2, . . . , xg, yg

for {a, b}⊥ such that x2 ∈ R+ i, y2 ∈ R, and xj, yj ∈ R for 3 ≤ j ≤ g. Since Λ ∼= Z2g, these
basis elements are all nonzero. We have

{a, b}⊥ ∩ R = Zy2 + Zx3 + Zy3 + · · ·+ Zxg + Zyg.

Write c4 =
∑g

j=2(mjxj + njyj) with mj, nj ∈ Z. Note that m2 = Im(c4) = −k4. We have

{a, b+ c4}⊥ = Z(−n2a+ x2) + Z(m2a+ y2) + · · ·+ Z(−nga+ xg) + Z(mga+ yg),

so an element
∑g

j=2 (sj(−nja+ xj) + tj(mja+ yj)) ∈ {a, b+ c4}⊥ lies in R if and only if

s2(−n2 + 1) + t2m2 +

g∑
j=3

(−sjnj + tjmj) = 0.

There is a symplectic isomorphism f : {a, b + c4}⊥ → {a, b}⊥ given by f(−nja + xj) = xj

and f(mja+ yj) = yj for 2 ≤ j ≤ g. For d′4 ∈ {a, b+ c4}⊥, we have

c′4 · d′4 = (c4 − c2) · f(d′4).

Suppose that at least one of m3, n3, . . . ,mg, ng is nonzero. After swapping (x3, y3) with
(xj, yj) for some 3 ≤ j ≤ g, and possibly replacing (x3, y3) with (−y3, x3), we may assume
n3 ̸= 0. Let s2 = −n3/ gcd(n2 − 1, n3) and s3 = (n2 − 1)/ gcd(n2 − 1, n3), and define

d′4 = s2(−n2a+ x2) + s3(−n3a+ x3) ∈ {a, b+ c4}⊥ ∩ R.

Note that if n2 − 1 = 0, then gcd(n2 − 1, n3) = |n3| ̸= 0. If all of m3, n3, . . . ,mg, ng are
zero, then {a, b+ c4}⊥ ∩ R contains x3, y3, . . . , xg, yg. In this case, let s2 = 0 and s3 = 1, so
d′4 = x3 ∈ {a, b + c4}⊥ ∩ R. Note that d′4 is primitive since gcd(s2, s3) = 1. To ensure that
{a, b2, c′4}⊥ is dense in R+ iZ, we will require that

c′4 · d′4 = (c4 − c2) · (s2x2 + s3x3) = 1.

Next, suppose c2 =
∑g

j=2(pjxj + qjyj) with pj, qj ∈ Z. Since p2 = Im(c2) = −k2, there is

d2 ∈ {a, b}⊥ ∩ R such that c2 · d2 = 1 if and only if gcd(k2, p3, q3, . . . , pg, qg) = 1. Note that
this implies c2 is primitive. The equation c′4 · d′4 = 1 reduces to

((n2y2 + n3y3)− (q2y2 + q3y3)) · (s2x2 + s3x3) = (q2 − n2)s2 + (q3 − n3)s3 = 1.

Equivalently, q2s2 + q3s3 = 1 + n2s2 + n3s3. Since gcd(s2, s3) = 1, there is a solution to this
equation in q2, q3 ∈ Z. Let Q2, Q3 ∈ Z be a solution. Then Q2 + rs3, Q3 − rs2 is also a
solution for all r ∈ Z.

We now produce the desired c2 ∈ {a, b}⊥. Fix k2 ∈ Z. Let p2 = −k2. Choose p3 = nk2+1
with n ∈ Z. Choose q2 = Q2 + rs3 and q3 = Q3 − rs2 with r ∈ Z. Now let

c2 = p2x2 + q2y2 + p3x3 + q3y3.
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We have Im(c2) = p2 = −k2. Since gcd(k2, p3) = 1, there is d2 ∈ {a, b}⊥ ∩ R such that
c2·d2 = 1, so c2 is primitive and {a, b, c2}⊥ is dense in R+iZ. Since (q2−n2)s2+(q3−n3)s3 = 1,
we have c′4 ·d′4 = 1, which implies c′4 is primitive and {a, b2, c′4}⊥ is dense in R+iZ. Moreover,
these properties are all preserved under translating p3 by an integer multiple of k2 and
translating (q2, q3) by an integer multiple of (s3,−s2), which amounts to translating c2 by an
element of Zk2x3 +Z(s3y2 − s2y3). Since Λ ∼= Z2g, and since at least one of s2, s3 is nonzero,
we have (s3y2−s2y3)/k2x3 /∈ Q, so Zk2x3+Z(s3y2−s2y3) is dense in R. Thus, by translating
c2 by an element of Zk2x3 + Z(s3y2 − s2y3), we can ensure that b2 = k2a + b + c2 satisfies
|b2 + ε1| < ε. This concludes Step 1.
Before we begin Step 2, we make the following observation similar to the setup before Step

1. Fix a1 ∈ a⊥ such that a1 · b = 1 and |a1 − 2i| < ε. Applying the relations in (22) twice,
we see that for all primitive a′1 ∈ {a, b}⊥ such that |a′1 + (ε2 − i)| < 4ε, and for all primitive
a2 ∈ {−a′1 − b, a+ b}⊥ such that |a2 − (ε3 + 2i)| < 4ε,

(a, b) ∼Λ (−a′1 − b, a+ b) ∼Λ (−a2 − a− b,−a′1 + a).

Similarly, for all primitive a′′1 ∈ {a1, b}⊥ such that |a′′1 + (ε2 − 2i)| < 4ε, and for all primitive
a′2 ∈ {−a′′1 − b, a1 + b}⊥ such that |a′2 − (ε3 + i)| < 4ε,

(a1, b) ∼Λ (−a′′1 − b, a1 + b) ∼Λ (−a′2 − a1 − b,−a′′1 + a).

Step 2a. Recall that a1 ∈ a⊥ is such that a1 · b = 1 and |a1 − 2i| < ε. An argument similar
to Step 1a will show that (a1, b) ∼Λ (a, b). Since {a, b, a1}⊥ ∩R has rank at least 2g− 4 ≥ 2,
it is dense in R. Then since a1−a ∈ {a, b, a1}⊥∩ (R+ i), the primitive submodule {a, b, a1}⊥
is dense in R+ iZ. Then by Lemma 6.8, there is a′1 ∈ {a, b, a1}⊥ such that |a′1+(ε2− i)| < ε
and such that both a′1 and a′′1 = a′1 + a1 − a are primitive. We have a′′1 ∈ {a, b, a1}⊥ and
|a′′1+(ε2−2i)| < 3ε. The primitive submodule V2 = {−a′1−b, a+b,−a′′1−b, a1+b}⊥ has rank
at least 2g− 3 ≥ 3 by the relations in (20), and since a1 − a ∈ V2 ∩ (R+ i), we see that V2 is
dense in R+ iZ. Then by Lemma 6.8, there is a2 ∈ V2 such that |a2− (ε3+2i)| < ε and such
that both a2 and a′2 = a2 + a− a1 are primitive. We have a′2 ∈ V2 and |a′2 − (ε3 + i)| < 3ε.
Since V2 = {−a′1 − b, a+ b}⊥ ∩ {−a′′1 − b, a1 + b}⊥, we have

(a, b) ∼Λ (−a2 − a− b,−a′1 + a) = (−a′2 − a1 − b,−a′′1 + a1) ∼Λ (a1, b).

Step 2b. Fix a4 ∈ Λ such that a4 · b = 1, |a4 − i| < ε, and {a4, b}⊥ is dense in R + iZ.
As in Step 1b, we will find a1, a2, a3 ∈ Λ such that a1 ∈ a + {a, b}⊥, a2 ∈ a1 + {a1, b}⊥,
a3 ∈ a2 + {a2, b}⊥, a4 ∈ a3 + {a3, b}⊥, and such that |a1 − 2i| < ε, |a2 − i| < ε, |a3 − 2i| < ε.
Step 2a then implies (a, b) ∼Λ (a1, b) ∼Λ (a2, b) ∼Λ (a3, b) ∼Λ (a4, b).

First, fix a2 ∈ Λ such that a2 · b = 1, |a2 − i| < ε, and {a2, b}⊥ is dense in R + iZ.
Additionally, suppose that a2 = a + k2b + c2 with k2 ∈ Z, c2 ∈ {a, b}⊥ primitive, and
{a, b, c2}⊥ dense in R + iZ. As in Step 1b, there is d2 ∈ {a, b}⊥ such that c2 · d2 = 1 and
e ∈ {a, b, c2}⊥ such that a1 = a+ k2d2 + e satisfies |a1 − 2i| < ε. We have a1 ∈ a+ {a, b}⊥,
a2 ∈ a1 + {a1, b}⊥, so by Step 1a, (a, b) ∼Λ (a1, b) ∼Λ (a2, b).
Now write a4 = a + k4b + c4 with k4 ∈ Z and c4 ∈ {a, b}⊥. It is enough to find k2 ∈ Z

and c2 ∈ {a, b}⊥ primitive, such that a2 = a+ k2b+ c2 satisfies |a2 − 2i| < ε and {a, b, c2}⊥
is dense in R+ iZ, and such that a4 = a2 + k′

4b+ c′4 with k′
4 ∈ Z and c′4 ∈ {a2, b}⊥ primitive

such that {a, b2, c′4}⊥ is dense in R + iZ. The same argument as in Step 1b, with the roles
of a and b exchanged, produces the desired k2 and c2. This concludes Step 2b.
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Step 3. Exactly the same as Step 3 in the proof of Lemma 6.10. □

Proof. (of Theorem 1.3) The proof exactly follows that of Theorems 6.11 and 6.12. □

The transfer principle and proving Theorems 1.2 and 1.4. Theorem 1.1 can be
used to prove Theorem 1.2, using the transfer principle from [CDF] and applications of
general results in homogeneous dynamics to the action of Sp(2g,Z) on Sp(2g,R)/ Sp(2g −
2,R) from [Kap], which we briefly explain. For ϕ ∈ H1(Sg;C), let V (ϕ) ⊂ H1(Sg;R) be
the real vector subspace spanned by the real and imaginary parts Re(ϕ) and Im(ϕ). The
symplectic automorphism group Aut(H1(Sg;R)) ∼= Sp(2g;R) acts transitively on the set of
ϕ ∈ H1(Sg;C) such that ⟨ϕ, ϕ⟩ = 1 by acting on Re(ϕ) and Im(ϕ) simultaneously, and the
stabilizer of ϕ is Aut(V (ϕ)⊥) ∼= Sp(2g − 2;R). Let C ⊂ ΩMg(κ) be a stratum component

satisfying the hypotheses of Theorem 1.1, and let Π : C̃ → C be the Torelli cover of this

stratum component. Recall that points in C̃ ⊂ ΩSg(κ) are holomorphic 1-forms (X,ω) ∈ C
equipped with a symplectic isomorphism H1(Sg;C) ∼= H1(X;C) identifying H1(Sg;Z) and
H1(X;Z). Consider the restriction of the period map Perg : C̃ → H1(Sg;C). Since Perg is a

holomorphic submersion on C̃, the image Perg(C̃) is open in H1(Sg;C). Moreover, the image
of Perg is invariant under the action of Aut(H1(Sg;Z)) ∼= Sp(2g,Z). The set

Hg =
{
ϕ ∈ H1(Sg;C) : ⟨ϕ, ϕ⟩ = 1, Per(ϕ) ∼= Z2g, Per(ω) ∩ Rz ⊂ Qz for all z ∈ C

}
is then Aut(H1(Sg;Z))-invariant, and is contained in the image of Perg by Proposition 3.10
in [CDF]. Thus, we can identify Hg with an Sp(2g;Z)-invariant full measure subset of
Sp(2g,R)/ Sp(2g − 2,R). The set

GC =
{
(X,ω) ∈ C1 : Per(ω) ∼= Z2g, Per(ω) ∩ Rz ⊂ Qz for all z ∈ C

}
is saturated for the absolute period foliation of C1 and is a full measure subset of C1.

Now, Theorem 1.1 tells us that for all ϕ ∈ Hg, the space of isoperiodic forms C(ϕ) is
connected. Since Per(ϕ) ∼= Z2g, this is equivalent to the fiber Per−1

g (ϕ) being connected.

Following [CDF], since the fibers Per−1
g (ϕ) are connected for all ϕ ∈ Hg, we get a bijection

A 7→ Perg(Π
−1(A)) between subsets of GC that are saturated for the absolute period foliation

of C1 and subsets of Hg that are invariant under the action of Aut(H1(Sg;Z)). Under this
bijection, positive measure subsets correspond to positive measure subsets, and dense subsets
correspond to dense subsets. It follows from Moore’s ergodicity theorem [Zim] that the action
of Sp(2g,Z) on Sp(2g,R)/ Sp(2g− 2,R) is ergodic, and thus the absolute period foliation of
C1 is ergodic. From the classification of Sp(2g,Z)-orbit closures in Sp(2g,R)/ Sp(2g − 2,R)
in Lemma 6.1, which is an application of Ratner’s orbit closure theorem [Rat], we deduce
that leaves of the absolute period foliation in GC are dense in C1. This establishes Theorem
1.2. Similarly, Theorem 1.3 implies Theorem 1.4.

Remark 6.21. If we already knew the genus 3 case of Theorems 1.1 and 1.3, the equivalence
relations in Lemmas 6.6 and 6.17 would be simpler definitions, and the proofs would be much
easier. This is because in genus at least 4, the holomorphic 1-forms in question admit a pair of
splittings whose associated cylinders are disjoint. See Figure 6 for an example in ΩM4(5, 1).
For the inductive steps in genus at least 4, we would know that ∼Λ satisfies (z, w) ∼Λ (z′, w′)
whenever z′, w′ ∈ {z, w}⊥ and Im(zw)+ Im(z′w′) < 1. Using Lemma 6.1, one can then show
that for any (z, w), (z′, w′) ∈ Λ(0,1), there is (z

′′, w′′) ∈ Λ(0,1) with z′′, w′′ ∈ {z, w, z′, w′}⊥ and

Im(z′′w′′) > 0 arbitrarily small, and thus Λ(0,1) consists of a single equivalence class. This
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Figure 6. A holomorphic 1-form in ΩM4(5, 1) with a pair of splittings α±

and γ± whose associated cylinders are disjoint.

approach crucially relies on being in genus at least 4. However, our proofs are inductive and
crucially rely on the genus 3 case, which is the hardest case.

Remark 6.22. Our proof of the ergodicity part of Theorem 1.2 does not crucially rely on
the rigidity theorems of Eskin-Mirzakhani-Mohammadi [EMM], and only relies on Moore’s
ergodicity theorem and the ergodicity of the GL+(2,R)-action on stratum components. We
can replace each stratum component C appearing in Theorem 1.2 with a nonempty, open,
GL+(2,R)-invariant subset U ⊂ C of holomorphic 1-forms admitting a presentation by it-
erated connected sums as in the construction in the proof of Lemma 4.2. With this mod-
ification, the proof of Theorem 1.1 shows that the intersection C(ϕ) ∩ U is connected for
all cohomology classes ϕ as in Theorem 1.2. Since C1 ∩ U is a full measure subset of C1,
this suffices to establish the ergodicity of the absolute period foliation of C1 via the transfer
principle as above.

We conclude this subsection with a question that proposes a possible classification of clo-
sures of leaves of A(κ) in ΩMg(κ). This question asks whether all of the possible constraints
on closures of leaves of A(κ) come from closed subgroups of C containing the absolute pe-
riods, closed SL(2,R)-invariant subsets of ΩMg(κ) that are saturated for A(κ), and loci of
branched covers.

Question 6.23. Let ΩMg(κ) be a stratum with |κ| > 1, and fix (X,ω) ∈ Ω1Mg(κ). Let
L be the leaf of A(κ) through (X,ω), and let L be the closure of L in ΩMg(κ). Let Λ be
the closure of Per(ω) in C, and let Λ0 be the identity component of Λ. Lastly, let M be the
closure of SL(2,R) · L in ΩMg(κ). Is one of the following true?



56 KARL WINSOR

(1) L is a connected component of the set of holomorphic 1-forms (X ′, ω′) ∈ M such
that Per(ω′) + Λ0 = Λ.

(2) L = L and L consists of branched covers of holomorphic 1-forms of lower genus.

When Λ = C, the statement in (1) reduces to L = M. Note that the statement in
(2) applies to some holomorphic 1-forms whose absolute periods are dense in C, since the
branched cover may be of a holomorphic 1-form of genus greater than 1.

A positive answer to Question 6.23 would imply that closures of leaves of the absolute
period foliation enjoy rigidity properties similar to those of GL+(2,R)-orbit closures. Specif-
ically, for any leaf L of A(κ), either R>0 · L is GL+(2,R)-invariant and therefore locally
defined by homogeneous R-linear equations, or L is locally defined by inhomogeneous R-
linear equations in the real and imaginary parts of local period coordinates.

Monodromy. Let C be a stratum component, and let π1(C) be its orbifold fundamental
group. The projection C → Mg induces a homomorphism π1(C) → Modg. Choose a
symplectic basis {aj, bj}gj=1 for H1(Sg;Z). The choice of symplectic basis gives us an ac-

tion of Sp(2g,Z) on H1(Sg;Z), and an action on H1(Sg;C) by acting on homomorphisms
H1(Sg;Z) → C by precomposition. The action of Modg on H1(Sg;Z) then induces a homo-
morphism

ρC : π1(C) → Sp(2g,Z)

called the monodromy representation of π1(C) on absolute homology. We now describe the
implications of the connectivity of spaces of isoperiodic forms in C for the image of ρC, and
we prove Theorem 1.6.

Fix (X,ω) ∈ C without automorphisms, choose a symplectic isomorphismm : H1(Sg;Z) →
H1(X;Z), and let ϕ ∈ H1(Sg;C) be the cohomology class satisfying ϕ(c) =

∫
m(c)

ω for all

c ∈ H1(Sg;Z), so (X,ω) ∈ C(ϕ). The symplectic basis {m(aj),m(bj)}gj=1 for H1(X;Z)
determines an action of Sp(2g,Z) on H1(X;Z). Let

P (X,ω) =

(∫
m(a1)

ω,

∫
m(b1)

ω, . . . ,

∫
m(ag)

ω,

∫
m(bg)

ω

)
∈ C2g

be the vector of absolute periods with respect to this symplectic basis of H1(X;Z). Choose
a path γ1 : [0, 1] → C from (X,ω) to some (X ′, ω′). Parallel transport along γ1 determines
an identification H1(X;Z) ∼= H1(X

′;Z), so we can consider the vector of absolute periods
P (X ′, ω′) with respect to the corresponding symplectic basis ofH1(X

′;Z). Fix A ∈ Sp(2g,Z),
and suppose that

A · P (X,ω) = P (X ′, ω′). (25)

The action of A on H1(X;Z) satisfies ∫
A·c

ω =

∫
c

ω′

for all c ∈ H1(X;Z). Since the homomorphism Modg → Aut(H1(Sg;Z)) is surjective, we
then have (X ′, ω′) ∈ C(ϕ). Suppose that C(ϕ) is connected. Then (X,ω) and (X ′, ω′) lie on
the same leaf of the absolute period foliation of C, so there is another path γ2 : [0, 1] → C
from (X ′, ω′) to (X,ω) along which the absolute periods are constant. Concatenating γ1 and
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γ2 gives a loop γ in C based at (X,ω). Letting B = ρC(γ), the action of B on H1(X;Z) also
satisfies ∫

B·c
ω =

∫
c

ω′

for all c ∈ H1(X;Z), so B−1A stabilizes ϕ. We also have a monodromy homomorphism

ρC(ϕ) : π1(C(ϕ)) → Sp(2g,Z).

In the typical case where Per(ϕ) ∼= Z2g, the matrix B−1A is the identity matrix, and thus
B lies in the image of ρC. In the special case where Per(ϕ) has rank less than 2g, if we
additionally assume that the image of ρC(ϕ) contains the stabilizer of ϕ in Sp(2g,Z), then B
lies in the image of ρC.

Now consider all of the paths γ1 : [0, 1] → C such that γ1(0) = (X,ω) and such that
γ1(1) = (X ′, ω′) lies in C(ϕ). Associated to each such path is a matrix A ∈ Sp(2g,Z) such
that (X,ω), (X ′, ω′), and A satisfy (25). Let Sω denote this set of matrices, and let Gω

be the subgroup of Sp(2g,Z) generated by Sω. Note that Sω and Gω implicitly depend on
the symplectic basis {m(aj),m(bj)}gj=1. Our goal is to show that the connectivity of C(ϕ),
together with the above assumption on ρC(ϕ), imply that ρC is surjective. Thus, our task is to
find a collection of paths satisfying (25) for which the associated matrices generate Sp(2g,Z),
which we restate in the following lemma.

Lemma 6.24. Fix g ≥ 3, let C be a component of a stratum ΩMg(κ) with |κ| > 1, and
let ϕ ∈ H1(Sg;C) be positive. Suppose that C(ϕ) is connected. If Per(ϕ) has rank less than
2g, suppose also that the image of ρC(ϕ) contains the stabilizer of ϕ in Sp(2g,Z). If there is
(X,ω) ∈ C(ϕ) such that Gω = Sp(2g,Z), then ρC is surjective.

First, we use Kapovich’s classification [Kap] of Sp(2g,Z)-orbit closures in the space of
positive cohomology classes in H1(Sg;C), restated in Lemma 6.1, to restrict our attention
to a small open subset of a stratum component.

Lemma 6.25. Fix g ≥ 3, and let C be a component of a stratum ΩMg(κ). Suppose there
is a nonempty open subset U ⊂ C such that for all (X,ω) ∈ U , we have Gω = Sp(2g,Z).
Then for all positive ϕ ∈ H1(Sg;C) such that Per(ϕ) is not discrete, there is (Y, η) ∈ C(ϕ)
such that Gη = Sp(2g,Z).

Proof. The R-linear action of GL+(2,R) on C induces an action on H1(Sg;C) by acting on
homomorphisms H1(Sg;Z) → C by postcomposition. Fix a positive ϕ ∈ H1(Sg;C) such
that Per(ϕ) is not discrete. By Lemma 6.1, GL+(2,R) · (Sp(2g,Z) · ϕ) is dense in the space
of positive cohomology classes in H1(Sg;C). This implies GL+(2,R) · C(ϕ) is dense in C.
The GL+(2,R)-action on C respects (25), in the sense that if γ1 : [0, 1] → C is a path from
(X,ω) to (X ′, ω′) and A is a matrix in Sp(2g,Z) such that γ1 and A satisfy (25), then for
all M ∈ GL+(2,R), the path Mγ1 and the matrix A also satisfy (25). Thus, the set of
(X,ω) ∈ C such that Gω = Sp(2g,Z) is GL+(2,R)-invariant. By assumption, this set also
contains a nonempty open subset of C, so it intersects GL+(2,R) · C(ϕ). □

Next, we recall a convenient generating set for Sp(2g,Z) from Section 6.1 in [FM], which
we describe in terms of the chosen symplectic basis {aj, bj}gj=1 for H1(Sg;Z). The shears
U1, U2 are given by

U1(b1) = a1 + b1, U2(a1) = a1 + b1.
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The factor mix M is given by

M(b1) = b1 + a2, M(b2) = b2 + a1.

The factor swaps Wj, 1 ≤ j ≤ g − 1, are given by

Wj(aj) = aj+1, Wj(bj) = bj+1, Wj(aj+1) = aj, Wj(bj+1) = bj.

In each case, elements of {aj, bj}gj=1 not mentioned are fixed. The group Sp(2g,Z) is gener-
ated by the 2 shears, the factor mix, and the g − 1 factor swaps.

We now begin our construction of holomorphic 1-forms (X,ω) ∈ C(ϕ) withGω = Sp(2g,Z),
for all components C of strata ΩMg(κ) with |κ| > 1, and all positive ϕ ∈ H1(Sg;C) with
Per(ϕ) not discrete. As usual, we reduce to the case of strata with two zeros, by splitting
zeros.

Lemma 6.26. Fix (X,ω) ∈ C, and suppose that (Y, η) ∈ C ′ arises from (X,ω) by splitting
a zero. Then Sω ⊂ Sη, and therefore Gω ⊂ Gη.

Proof. Suppose A ∈ Sω. This means there is a path γ1 : [0, 1] → C from (X,ω) to (X ′, ω′)
and a matrix A ∈ Sp(2g,Z) satisfying (25). Splitting a zero on (X,ω) to obtain (Y, η) results
in a saddle connection s on (Y, η) with distinct endpoints. Let z =

∫
s
η, and let Z1 and Z2

be the starting and ending points of s, respectively. Let Z3, . . . , Zn+1 be the other zeros of
η, and for 3 ≤ j ≤ n+ 1, let cj ∈ H1(Y, Z(η);Z) be represented by a path from Z1 to Zj.

Fix ε > 0 small, and let γ0 : [0, 1] → L(η) be the path starting at (Y, η) such that on
γ0(t) = (Yt, ηt), we have∫

s

ηt =

(
1− t

(
1− ε

|z|

))
z,

∫
cj

ηt =

∫
cj

η for 3 ≤ j ≤ n+ 1.

Along γ0, the zero Z2 moves toward Z1. The holomorphic 1-form (Y1, η1) arises from (X,ω)
by splitting the same zero to get a saddle connection whose holonomy has absolute value ε.

By choosing a lift γ̃1 of γ1 to a stratum cover by prong-marked differentials, making a
continuous choice along γ̃1 of short segments with holonomy εz/|z| emanating from the
distinguished zero, and applying a zero splitting map, we obtain a path γ′

1 : [0, 1] → C ′

starting at (Y1, η1). Since splitting zeros does not change the absolute periods, the path γ′
1

and the matrix A also satisfy (25). Concatenating γ0 and γ′
1 then gives us A ∈ Sη. □

For the case of nonhyperelliptic components of strata with two zeros, we will use connected
sums with a torus to reduce to a small number of base cases.

Lemma 6.27. Let C be a nonhyperelliptic component of a stratum ΩMg(m1,m2) with
g ≥ 4. Suppose that (X,ω) ∈ C has a pair of splittings α±

j , j = 1, 2, such that the associated

cylinders Cj are disjoint. Let (zj, wj) be the associated periods of α±
j . Let (Xj, ωj) be

the holomorphic 1-form in genus g − 1 obtained from (X,ω) by slitting and regluing α±
j ,

and let Cj be the stratum component containing (Xj, ωj). Suppose that Sωj
contains paths

γj,k : [0, 1] → Cj, 1 ≤ k ≤ nj, from (Xj, ωj) to (Xj,k, ωj,k), with the following properties.

• The associated matrices Aj,k, 1 ≤ k ≤ nj, generate Sp(2g − 2,Z).
• The endpoints (Xj,k, ωj,k) of γj,k, 1 ≤ k ≤ nj, do not have any saddle connections
whose holonomies lie in Ij = {tzj : 0 ≤ t ≤ 1}.

Then Gω = Sp(2g,Z).
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Proof. For j = 1, 2, let αj ⊂ Cj be a closed geodesic, and let βj ⊂ Cj ∪ Z(ω) be a saddle
connection crossing Cj, oriented so that αj and βj intersect exactly once positively. Let aj =
[αj] ∈ H1(X;Z), and let bj = [βj] ∈ H1(X;Z). Then any homology class in {a1, b1, a2, b2}⊥
is represented by a union of closed loops contained in X \ (C1 ∪ C2).
Fix ε > 0 small. For j = 1, 2, let γj : [0, 1] → C be the path starting at (X,ω) such that

on γj(t) = (Xt, ωt), we have ∫
aj

ωt =

(
1− t

(
1− ε

|zj|

))
zj,

while
∫
bj
ωt remains constant and the relative period of any path whose interior lies in X \Cj

remains constant. Along γj, the splitting α±
j shrinks until its period has absolute value ε,

while X \ Cj remains unchanged. Let (X ′
j, ω

′
j) = γj(1).

Next, fix 1 ≤ k ≤ nj. By choosing a lift γ̃j,k of γj,k to a stratum cover by prong-marked
differentials, making a continuous choice along γ̃j,k of short segments with holonomy εzj/|zj|
emanating from the distinguished zero, and applying a connected sum map, we obtain a
path γ′

j,k : [0, 1] → C starting at (X ′
j, ω

′
j). Let (X ′

j,k, ω
′
j,k) = γ′

j,k(1). For 0 ≤ t ≤ 1, define
zj(t) = (ε/|zj|+ t(1− ε/|zj|))zj, and let Tj(t) be the flat torus (C/(Zzj(t)+Zwj), dz). Then
(X ′

j,k, ω
′
j,k) arises from (Xj,k, ωj,k) by a connected sum with the torus Tj(0). Moreover, since

(Xj,k, ωj,k) does not have any saddle connections whose holonomies lie in Ij by assumption,
we can similarly form connected sums with (Xj,k, ωj,k) and the torus Tj(t) for all 0 ≤ t ≤ 1.
In this way, we obtain a path γ′′

j,k : [0, 1] → C starting at (X ′
j,k, ω

′
j,k). Along γ′′

j,k, the splitting

α±
j on (X ′

j,k, ω
′
j,k) grows until its period is zj, while X ′

j,k \ Cj remains unchanged.
Now extend a1, b1, a2, b2 to a symplectic basis a1, b1, . . . , ag, bg for H1(X;Z). Let H1

∼=
Sp(2g − 2,Z) be the subgroup of Sp(2g,Z) fixing a1 and b1, and let H2

∼= Sp(2g − 2,Z)
be the subgroup of Sp(2g,Z) fixing a2 and b2. For j = 1, 2, and for 1 ≤ k ≤ nj, the
concatenation γj ∪ γ′

j,k ∪ γ′′
j,k and the matrix A′

j,k ∈ Hj determined by Aj,k satisfy (25).
Since the matrices Aj,k, 1 ≤ k ≤ nj, generate Sp(2g − 2,Z), the matrices A′

j,k, 1 ≤ k ≤ nj,
generate Hj. This shows that Gω contains the subgroups H1 and H2. Lastly, since g ≥ 4,
the subgroups H1, H2 generate Sp(2g,Z), thus Gω = Sp(2g,Z). □

The construction in the proof of Lemma 4.2 can be adapted to show that, with a few
exceptions in low genus, any nonhyperelliptic component C of a stratum with two zeros
contains holomorphic 1-forms with a pair of splittings for which the associated cylinders
are disjoint. See Figure 6 for an example in ΩM4(5, 1). This will allow us to run an
inductive argument with Lemma 6.27 to construct holomorphic 1-forms (X,ω) ∈ C(ϕ) with
Gω = Sp(2g,Z) for all positive ϕ ∈ H1(Sg;C) such that Per(ϕ) is not discrete. We now
address the base cases needed for this inductive argument.

Lemma 6.28. Let C be one of the strata ΩM2(1, 1), ΩM3(3, 1), the nonhyperelliptic com-
ponent of ΩM3(2, 2), or a component of ΩM4(4, 2). Fix a positive ϕ ∈ H1(Sg;C) such that
Per(ϕ) is not discrete. There is (X,ω) ∈ C(ϕ) such that Gω = Sp(2g,Z), where g is the
genus of X.

Proof. The proof is in cases, one for each stratum component in the statement of Lemma 6.28.

Case 1. Suppose C = ΩM2(1, 1). Every holomorphic 1-form in ΩM2(1, 1) can be presented
as a pair of flat tori glued along a pair of homologous saddle connections. (See, for instance,
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Proposition 1.16 in [Wri3].) Fix (X,ω) ∈ C(ϕ), and suppose (X,ω) is obtained by gluing
T1 = (C/(Zz1 + Zw1), dz) and T2 = (C/(Zz2 + Zw2), dz) along a pair of homologous saddle
connections s±. Since the set of holomorphic 1-forms (Y, η) ∈ C with Gη = Sp(4,Z) is
invariant under GL+(2,R), by applying an element of GL+(2,R) to (X,ω) we may assume
that z1 = 1 and w1 = i. Since Per(ϕ) is not discrete, the lattices Z+ Zi and Zz2 + Zw2 are
not commensurable. Thus, if a2 = Area(T2), by applying an element of SL(2,Z) to (X,ω)
we may assume that (z2, w2) is close to (a, ia). Lastly, by moving along L(ω) we may assume
that the saddle connections s± are short. Let u =

∫
s±

ω.
To show that Gω = Sp(4,Z), it is enough to show that Sω contains the generators

U1, U2,M,W1 for Sp(4,Z). We will do this by describing paths γU1 , γU2 , γM , γW1 : [0, 1] → C
starting at (X,ω) in terms of the period coordinates z1, w1, z2, w2, u. Any period coordinates
not mentioned will remain constant, and the period u of the saddle connections s± will
always remain constant. The paths are as follows.

• On γU1(t), we have w1(γU1(t)) = w1 + tz1.
• On γU2(t), we have z1(γU2(t)) = z1 + tw1.
• On γM(t), we have wj(γM(t)) = wj + tz3−j for j = 1, 2.
• On γW1(t), we have zj(γW1(t)) = (1− t)zj + tz3−j and wj(γW1(t)) = (1− t)wj + tw3−j

for j = 1, 2.

The paths γUj
are closed loops in C, and γUj

and the shear Uj satisfy (25). Since (z1, w1) =
(1, i) and (z2, w2) is close to (a, ia), the paths γM and γW1 are well-defined. The path γM
and the factor mix M satisfy (25), and the path γW1 and the factor swap W1 also satisfy
(25).

We are done with Case 1. The rest of the cases involve stratum components in genus
g ≥ 3, so by Lemma 6.25, it is enough to find a nonempty open subset of each of these
stratum components consisting of holomorphic 1-forms (Y, η) with Gη = Sp(2g,Z).

Case 2. Suppose C is the nonhyperelliptic component of ΩM3(2, 2). This case is similar to
Case 1. We have a nonempty open subset U ⊂ C consisting of holomorphic 1-forms (X,ω)
that can be presented as a triple of flat tori Tj = (C/(Zzj + Zwj), dz), 1 ≤ j ≤ 3, glued
along a triple of homologous saddle connections sj, 1 ≤ j ≤ 3, such that (zj, wj) is close
to (1, i) and u =

∫
sj
ω is small. Here, Tj is bounded by sj ∪ sj+1, indices taken modulo

3. To see that (X,ω) lies in the nonhyperelliptic component of ΩM3(2, 2), recall from
Theorem 2.1 that this component is also the odd component of ΩM3(2, 2). Since H1(X;Z)
has a symplectic basis represented by closed geodesics {αj, βj}3j=1 with αj, βj ⊂ Tj such that∫
αj
ω = zj and

∫
βj
ω = wj, and since these closed geodesics all have index 0, the spin parity

is ϕ(ω) =
∑3

j=1(0 + 1)(0 + 1) = 1mod 2.

We describe paths γU1 , γU2 , γM , γW1 , γW2 : [0, 1] → C starting at (X,ω) in terms of the
period coordinates z1, w1, z2, w2, z3, w3, u. The paths γU1 , γU2 , γM , γW1 are as in Case 1, and
they satisfy (25) with associated matrices U1, U2,M,W1, respectively. On γW2(t), we have

zj(γW2(t)) = (1− t)zj + tz5−j, wj(γW2(t)) = (1− t)wj + tw5−j, j = 2, 3.

The path γW2 and the factor swap W2 satisfy (25). Thus, Sω contains a generating set for
Sp(6,Z) and Gω = Sp(6,Z).
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Case 3. Suppose C = ΩM3(3, 1). There is a nonempty open subset of ΩM2(1, 1) consisting
of holomorphic 1-forms that can be presented as a pair of flat tori Tj = (C/(Zzj +Zwj), dz),
1 ≤ j ≤ 2, glued along a pair of homologous saddle connections sj, 1 ≤ j ≤ 2, such that
(zj, wj) is close to (1, i) and u =

∫
sj
ω is close to i/4. By forming connected sums with a

torus T3 = (C/(Zz3 + Zw3), dz) with (z3, w3) close to ((1 + i)/
√
2, (−1 + i)/

√
2), using the

segment in T2 that starts at the starting point of sj and has holonomy (1 + i)/
√
2, we get a

nonempty open subset U ⊂ ΩM3(3, 1).
Fix (X,ω) ∈ U with a presentation as above. The paths γU1 , γU2 , γM , γW1 are as in Case 1,

and they satisfy (25) with associated matrices U1, U2,M,W1, respectively. To describe γW2 ,
let γ1, γ2, γ3 : [0, 1] → C be paths such that γ1 starts at (X,ω) and γj+1 starts at γj(1) for
j = 1, 2, defined as follows. Fix ε > 0 small.

• On γ1(t), we have z3(γ1(t)) = (1− t(1− ε/|z3|))z3.
• On γ2(t), we have z2(t) = e2πit/8z2, w2(t) = e2πit/8w2, z3(t) = e−2πit/8εz3/|z3|, w3(t) =
e−2πit/8w3.

• On γ3(t), we have z2(t) = (1− t)e2πi/8z2 + tz3, w2(t) = (1− t)e2πi/8w2 + tw3, z3(t) =
(1− t)e−2πit/8εz3/|z3|+ tz2, w3(t) = (1− t)e−2πit/8w3 + tw2.

Let γW2 be the concatenation γ1 ∪ γ2 ∪ γ3. Along γW2 , we first shrink the splitting bounding
T3 until it has length ε. We then rotate the periods z2, w2 counterclockwise and simultane-
ously rotate z3, w3 clockwise until they have approximately the desired arguments. Lastly,
we linearly interpolate to get the desired final values of z2, w2, z3, w3, which amounts to per-
turbing z2, w2, w3 slightly while restoring the length of z3. The path γW2 and the factor swap
W2 satisfy (25). Thus, Sω contains a generating set for Sp(6,Z) and Gω = Sp(6,Z).

Case 4. Suppose C is the odd component of ΩM4(4, 2). This case is similar to Case 3. Recall
we have a nonempty open subset of ΩM3(2, 2) consisting of holomorphic 1-forms that can
be presented as a triple of flat tori Tj = (C/(Zzj + Zwj), dz), 1 ≤ j ≤ 3, glued along a
triple of homologous saddle connections sj, 1 ≤ j ≤ 3, such that (zj, wj) is close to (1, i) and
u =

∫
sj
ω is close to i/4. By forming connected sums with a torus T4 = (C/(Zz4 +Zw4), dz)

with (z4, w4) close to ((1 + i)/
√
2, (−1 + i)/

√
2), using the segment in T3 that starts at

the starting point of sj and has holonomy (1 + i)/
√
2, we get a nonempty open subset

U ⊂ ΩM4(4, 2). Moreover, since we started in the odd component of ΩM3(2, 2) and forming
connected sums with a torus preserves spin parity, U is contained in the odd component of
ΩM4(4, 2).

The paths γU1 , γU2 , γM , γW1 , γW2 are as in Case 2, and they satisfy (25) with associated
matrices U1, U2,M,W1,W2, respectively. The path γW3 is similar to the path for the last
factor swap in Case 3. Let γ1, γ2, γ3 : [0, 1] → C be paths such that γ1 starts at (X,ω) and
γj+1 starts at γj(1) for j = 1, 2, defined as follows. Fix ε > 0 small.

• On γ1(t), we have z4(γ1(t)) = (1− t(1− ε/|z4|))z4.
• On γ2(t), we have z3(t) = e2πit/8z3, w3(t) = e2πit/8w3, z4(t) = e−2πit/8εz4/|z4|, w4(t) =
e−2πit/8w4.

• On γ3(t), we have z3(t) = (1− t)e2πi/8z3 + tz4, w3(t) = (1− t)e2πi/8w3 + tw4, z4(t) =
(1− t)e−2πit/8εz4/|z4|+ tz3, w4(t) = (1− t)e−2πit/8w4 + tw3.

Let γW3 be the concatenation γ1 ∪ γ2 ∪ γ3. Then γW3 and the factor swap W3 satisfy (25).
Thus, Sω contains a generating set for Sp(8,Z) and Gω = Sp(8,Z).
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Case 5. Suppose C is the even component of ΩM4(4, 2). Recall from Theorem 2.1 that
the hyperelliptic component of ΩM3(2, 2) is also an even component. We can construct a
holomorphic 1-form in this hyperelliptic component from 6 parallelograms as follows. Fix
z0 ∈ C close to 1/2, and for 1 ≤ j ≤ 3, fix zj, wj ∈ C such that (zj, wj) is close to (1, i). Up
to translation, a parallelogram in C is specified by a pair of complex numbers, one for each
pair of parallel sides. Let P1, Q1, P2, Q2, P3, Q3 be the following parallelograms.

• P1 has sides given by z0, w1.
• Q1 has sides given by z1 − z0, w1.
• P2 has sides given by z1 − z0, w2.
• Q2 has sides given by z2 − z1 + z0, w2.
• P3 has sides given by z2 − z1 + z0, w3.
• Q3 has sides given by z3 − z2 + z1 − z0, w3.

Glue left and right sides together in pairs, and top and bottom sides together in pairs, such
that glued sides correspond to the same complex number. Specifically, for 1 ≤ j ≤ 3, glue
the left side of Pj and the right side of Qj, and glue the right side of Pj and the left side of
Qj. Glue the top and bottom sides of P1 together. For 1 ≤ j ≤ 2, glue the top side of Qj

and the bottom side of Pj+1, and glue the bottom side of Qj and the top side of Pj+1. Glue
the top and bottom sides of Q3 together.

Let (X0, ω0) be the resulting holomorphic 1-form. The corners on the left sides of P1, Q2, P3

and the right sides of Q1, P2, Q3 are identified to a zero of order 2. Similarly, the corners on
the right sides of P1, Q2, P3 and the left sides of Q1, P2, Q3 are identified to a zero of order 2.
There is an isometric involution of (X0, ω0) that acts on the interior of each parallelogram by
rotating by π. This involution exchanges the two zeros, and has a fixed point in the center
of each parallelogram and in the center of the top side of P1 and the bottom side of Q3, for
a total of 8 fixed points. This verifies that (X0, ω0) lies in the hyperelliptic component of
ΩM3(2, 2). The holomorphic 1-forms with presentations by parallelograms as above form a
nonempty open subset of the hyperelliptic component of ΩM3(2, 2).
Next, by forming connected sums with the torus T4 = (C/(Zz4 + Zw4), dz) with (z4, w4)

close to (e2πi/16, ie2πi/16), using the segment in P3 ∪Q3 that starts at the bottom-left corner
of Q3 and has holonomy z4, we obtain a nonempty open subset U ⊂ ΩM4(4, 2). Since
we started in the even component of ΩM3(2, 2), U is contained in the even component of
ΩM4(4, 2).

Fix (X,ω) ∈ U . We describe paths γU1 , γU2 , γM , γW1 , γW2 , γW3 : [0, 1] → C starting at
(X,ω) in terms of the period coordinates z1, w1, . . . , z4, w4, z0. Here, z1, w1, . . . , z4, w4 arise
from a symplectic basis for absolute homology, and z0 arises from a path joining the two
zeros. As before, any period coordinates not mentioned remain constant.

• On γU1(t), we have w1(γU1(t)) = w1 + tz1.
• On γU2(t), we have z1(γU2(t)) = z1 + tw1 and z0(γU2(t)) = z0 + tw1.
• On γM(t), we have wj(γM(t)) = wj + tz3−j for j = 1, 2.
• For j = 1, 2, on γWj

(t), we have zk(γWj
(t)) = (1 − t)zk + tz2j+1−k and wk(γWj

(t)) =
(1− t)wk + tw2j+1−k for k = j, j + 1.

Along γU1 , the parallelograms P1 and Q1 are sheared approximately horizontally. Along
γU2 , the parallelogram P1 is sheared approximately vertically. Along γM , the parallelograms
P1, Q1, P2, Q2 are all sheared approximately horizontally. For j = 1, 2, along γWj

, the paral-
lelograms Pj, Qj, Pj+1, Qj+1 are slightly perturbed. Lastly, the path γW3 is a concatenation
of 3 paths γ1, γ2, γ3, similarly to Case 4, as follows. Fix ε > 0 small.
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• On γ1(t), we have z4(γ1(t)) = (1− t(1− ε/|z4|))z4.
• On γ2(t), we have z3(t) = e2πit/16z3, w3(t) = e2πit/16w3, z4(t) = e−2πit/16εz4/|z4|,
w4(t) = e−2πit/16w4.

• On γ3(t), we have z3(t) = (1 − t)e2πi/16z3 + tz4, w3(t) = (1 − t)e2πi/16w3 + tw4,
z4(t) = (1− t)e−2πit/16εz4/|z4|+ tz3, w4(t) = (1− t)e−2πit/16w4 + tw3.

The paths γU1 , γU2 , γM , γW1 , γW2 , γW3 satisfy (25) with associated matrices U1, U2,M,W1,W2,W3,
respectively. Thus, Sω contains a generating set for Sp(8,Z) and Gω = Sp(8,Z). □

Lemma 6.29. Fix g ≥ 3, and let C be a nonhyperelliptic component of a stratum ΩMg(m1,m2).
Fix a positive ϕ ∈ H1(Sg;C) such that Per(ϕ) is not discrete. There is (X,ω) ∈ C(ϕ) such
that Gω = Sp(2g,Z).

Proof. Lemma 6.28 handles the cases where C is one of the strata ΩM2(1, 1), ΩM3(3, 1), the
nonhyperelliptic component of ΩM3(2, 2), or a component of ΩM4(4, 2). By Lemma 4.2,
all other nonhyperelliptic components C of strata ΩMg(m1,m2) with m1,m2 odd contain a
nonempty open GL+(2,R)-invariant subset SC ⊂ C consisting of holomorphic 1-forms with
a pair of splittings whose associated cylinders are disjoint. In Cases 4 and 5 of the proof of
Lemma 6.28, we constructed holomorphic 1-forms in each component of ΩM4(4, 2) with a
splitting. By iteratively forming connected sums with a torus as in the proof of Lemma 4.2,
we see that all other nonhyperelliptic components C of strata ΩMg(m1,m2) with m1,m2

even contain a nonempty open GL+(2,R)-invariant subset SC ⊂ C consisting of holomorphic
1-forms with a pair of splittings whose associated cylinders are disjoint.

Let C ⊂ ΩMg(m1,m2) be a nonhyperelliptic component not covered by Lemma 6.28. By
induction, each nonhyperelliptic component of ΩMg−1(m1,m2− 2) and ΩMg−1(m1− 2,m2)
contains a nonempty open GL+(2,R)-invariant set of holomorphic 1-forms (Y, η) such that
Gη = Sp(2g − 2,Z). Thus, SC contains a nonempty open GL+(2,R)-invariant subset of
holomorphic 1-forms (X,ω) with a pair of splittings α±

j , j = 1, 2, whose associated cylinders
are disjoint, such that the holomorphic 1-forms (Xj, ωj) in genus g − 1 obtained by slitting
and regluing α±

j lie in nonhyperelliptic stratum components Cj and have Gωj
= Sp(2g−2,Z).

For j = 1, 2, let zj =
∫
α±
j
ω and let Ij = {tzj : 0 ≤ t ≤ 1}. Let γj,1, . . . , γj,nj

: [0, 1] → Cj
be paths starting at (Xj, ωj) realizing Gωj

= Sp(2g − 2,Z), and let Aj,1, . . . , Aj,nj
be the

associated matrices that generate Sp(2g − 2,Z).
There are small open neighborhoods Uj ⊂ Cj of (Xj, ωj) such that, as (Xj, ωj) varies over

Uj, we can vary the paths γj,k slightly to keep the associated matrices Aj,k constant. The
resulting endpoints of the paths γj,k are contained in a finite union of small open subsets
Uj,k ⊂ Cj. The set of holomorphic 1-forms in C with no saddle connections whose holonomy
lies in I1∪I2 is dense in C. Moreover, by Lemma 2.4, this set is open in C. Thus, possibly after
replacing (X,ω) with a nearby holomorphic 1-form in C and shrinking the neighborhoods
Uj of (Xj, ωj), we can ensure that the subsets Uj,k do not contain any holomorphic 1-forms
with a saddle connection whose holonomy lies in I1 ∪ I2. We can then apply Lemma 6.27 to
conclude that Gω = Sp(2g,Z), and we are then done by Lemma 6.25. □

It remains to address the case of hyperelliptic stratum components. Since we are only ad-
dressing strata with at least two zeros, we only need to consider the hyperelliptic component
of ΩMg(g − 1, g − 1), and we use a separate argument here.
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Lemma 6.30. Fix g ≥ 2, and let C be the hyperelliptic component of ΩMg(g − 1, g − 1).
Fix a positive ϕ ∈ H1(Sg;C) such that Per(ϕ) is not discrete. There is (X,ω) ∈ C(ϕ) such
that Gω = Sp(2g,Z).

Proof. The case where C is the stratum ΩM2(1, 1) is covered by Lemma 6.28. For the other
cases, since g ≥ 3, by Lemma 6.25 it is enough to find a nonempty open subset of C consisting
of holomorphic 1-forms (Y, η) with Gη = Sp(2g,Z).

We generalize the construction of holomorphic 1-forms in the hyperelliptic component
of ΩM3(2, 2) from Case 5 of the proof of Lemma 6.28. Fix z0 ∈ C close to 1/2, and for
1 ≤ j ≤ g, fix zj, wj ∈ C such that (zj, wj) is close to (1, i). For 1 ≤ j ≤ g, let Pj, Qj be
parallelograms given by a pair of complex numbers as follows.

• Pj has sides given by zj−1 − zj−2 + · · ·+ (−1)j−1z0 and wj.
• Qj has sides given by zj − zj−1 + · · ·+ (−1)jz0 and wj.

For 1 ≤ j ≤ g, glue Pj and Qj along the pairs of sides given by wj. For 1 ≤ j ≤ g − 1, glue
Pj+1 and Qj along the pairs of sides given by zj − zj−1 + · · · + (−1)jz0. Glue the two sides
of P1 given by z0 together, and glue the two sides of Qg given by zg − zg−1 + · · · + (−1)gz0
together. Let (X,ω) be the resulting holomorphic 1-form. The corners on the left sides
of P1, Q2, P3, . . . and the right sides of Q1, P2, Q2, . . . are identified to form a zero of order
g− 1. The corners on the right sides of P1, Q2, P3, . . . and the left sides of Q1, P2, Q3, . . . are
identified to form another zero of order g−1. There is an isometric involution of (X,ω) that
acts on the interior of each parallelogram by rotating by π, and so exchanges the two zeros
of ω. This involution fixes the center of each parallelogram, and fixes the midpoints of the
top side of P1 and the bottom side of Qg, for a total of 2g+2 fixed points. This verifies that
(X,ω) lies in the hyperelliptic component C of ΩMg(g− 1, g− 1). The holomorphic 1-forms
with presentations by 2g parallelograms as above form a nonempty open subset U ⊂ C.

Now fix (X,ω) ∈ U . We describe paths γU1 , γU2 , γM , γW1 , . . . , γWg−1 : [0, 1] → C starting at
(X,ω) in terms of the period coordinates z1, w1, . . . , zg, wg, z0. Here, z1, w1, . . . , zg, wg arise
from a symplectic basis for absolute homology, and z0 arises from a path joining the two
zeros. As before, any period coordinates not mentioned remain constant.

• On γU1(t), we have w1(γU1(t)) = w1 + tz1.
• On γU2(t), we have z1(γU2(t)) = z1 + tw1 and z0(γU2(t)) = z0 + tw1.
• On γM(t), we have wj(γM(t)) = wj + tz3−j for j = 1, 2.
• For 1 ≤ j ≤ g − 1, on γWj

(t), we have zk(γWj
(t)) = (1 − t)zk + tz2j+1−k and

wk(γWj
(t)) = (1− t)wk + tw2j+1−k for k = j, j + 1.

Along γU1 , the parallelograms P1 and Q1 are sheared approximately horizontally. Along
γU2 , the parallelogram P1 is sheared approximately vertically. Along γM , the parallelograms
P1, Q1, P2, Q2 are all sheared approximately horizontally. Along γWj

, the parallelograms
Pj, Qj, Pj+1, Qj+1 are slightly perturbed. The paths γU1 , γU2 , γM , γW1 , . . . , γWg−1 satisfy (25)
with associated matrices U1, U2,M,W1, . . . ,Wg−1, thus Gω = Sp(2g,Z). □

We have completed the task formulated in Lemma 6.24, so we can now conclude with our
results on disconnected spaces of isoperiodic forms.

Lemma 6.31. Let C be a component of a stratum ΩMg(κ) with |κ| > 1, and let ϕ ∈
H1(Sg;C) be a positive cohomology class such that Per(ϕ) is not discrete. There is (X,ω) ∈
C(ϕ) such that Gω = Sp(2g,Z).
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Proof. Induct on |κ|, using Lemma 6.29 for the base case |κ| = 2, and Lemma 6.26 and
Lemmas 2.5-2.6 for the inductive step. □

Theorem 6.32. Let C be a component of a stratum ΩMg(κ) with |κ| > 1, and suppose
that C is a spin component or a hyperelliptic component. Fix ϕ ∈ H1(Sg;C) positive such
that Per(ϕ) is not discrete.

(1) If Per(ϕ) ∼= Z2g, then C(ϕ) is disconnected.
(2) If Per(ϕ) has rank less than 2g and C(ϕ) is connected, then the image of ρC(ϕ) does

not contain the stabilizer of ϕ in Sp(2g,Z).
Proof. If Per(ϕ) ∼= Z2g, suppose that C(ϕ) is connected. If Per(ϕ) has rank less than 2g,
suppose that C(ϕ) is connected and that the image of ρC(ϕ) contains the stabilizer of ϕ in
Sp(2g,Z). In either case, Lemma 6.31 tells us there is (X,ω) ∈ C(ϕ) such that Gω =
Sp(2g,Z), and then by Lemma 6.24, the monodromy homomorphism ρC : π1(C) → Sp(2g,Z)
is surjective. However, by Corollary 1.3 in [Gut], this is a contradiction since C is a spin
component or a hyperelliptic component. □

Theorem 1.6 is Case 1 of Theorem 6.32. We note that for components of strata with at
least two zeros that are not spin or hyperelliptic components, we recover the result in [Gut]
that ρC is surjective.

Disconnected spaces of isoperiodic forms and covering constructions. Lastly, we
describe our examples of spaces of isoperiodic forms that have positive dimension and infin-
itely many connected components, which arise from covering constructions.

Proof. (of Theorem 1.5) Write g = 2h with h ≥ 2. Recall that C = ΩMg(2g − 3, 1), and
let C ′ = ΩMh(2h − 2). Fix (Y, η) ∈ C ′ such that Per(η) is dense in C. Choose an oriented
geodesic segment γ on (Y, η) that starts at the zero of η and is otherwise disjoint from Z(η).
Take two copies of (Y, η), slit each copy along γ, and reglue opposite sides of the slits to
obtain a holomorphic 1-form (X,ω) ∈ C. The two zeros are identified to form a zero of order
2g − 3, and the other endpoints of the slits are identified to form a zero of order 1. There is
a degree 2 holomorphic branched covering f : X → Y such that f ∗η = ω that is branched
over the two endpoints of γ.

Choose ϕ′ ∈ H1(Sh;C) such that (Y, η) ∈ C ′(ϕ′), and choose ϕ ∈ H1(Sg;C) such that
(X,ω) ∈ C(ϕ). The connected component of (X,ω) in C(ϕ) is a closed leaf of A(2g − 3, 1)
consisting of degree 2 branched coverings of (Y, η) branched over the zero of η and a point
in Y \ Z(η). Note that connected components of C(ϕ) have complex dimension 1, while
connected components of C(ϕ′) are points.

Since Per(ϕ′) is dense in C, when h ≥ 3, Lemma 6.1 implies that C ′(ϕ′) is dense in a
fixed-area locus in C ′. For h = 2, there is one other possibility when (Y, η) is an eigenform
for real multiplication, in which case C ′(ϕ′) is dense in the SL(2,R)-orbit closure of (Y, η). In
particular, C ′(ϕ′) is infinite. For any (Y ′, η′) ∈ C ′(ϕ′), and any oriented geodesic segment γ′

starting at a zero of η′ and otherwise disjoint from Z(η′), by slitting and regluing two copies
of (Y ′, η′) along γ′ as above, we obtain a holomorphic 1-form (X ′, ω′) ∈ C(ϕ) as a branched
double cover of (Y ′, η′). The cover (X ′, ω′) has an automorphism of order 2 that exchanges
the two sheets of the cover. Moreover, the automorphism group of any holomorphic 1-form
in C has order at most 2, since such an automorphism must fix the unique simple zero. Thus,
each element of C ′(ϕ′) determines a distinct connected component of C(ϕ) in this way. Since
C ′(ϕ′) is infinite, C(ϕ) has infinitely many connected components. □



66 KARL WINSOR

References

[Bai] M. Bainbridge. Euler characteristics of Teichmüller curves in genus two. Geom. Top. 11 (2007),
1887–2073.

[BJJP] M. Bainbridge, C. Johnson, C. Judge, and I. Park. Haupt’s theorem for strata of abelian differentials.
Israel J. Math. 252 (2022), 429–459.

[BSW] M. Bainbridge, J. Smillie, and B. Weiss. Horocycle dynamics: new invariants and the eigenform loci
in the stratum H(1, 1). Mem. Amer. Math. Soc., to appear.

[CDF] G. Calsamiglia, B. Deroin, and S. Francaviglia. A transfer principle: from periods to isoperiodic
foliations. Geom. Funct. Anal. 33 (2023), 57–169.

[CW] J. Chaika and B. Weiss. On the ergodic theory of the real Rel foliation. Preprint (2023).
[CM] Y. Cheung and H. Masur. Minimal non-ergodic directions on genus-2 translation surfaces. Ergodic

Th. & Dynam. Sys. 26 (2006), 341–351.
[Dur] E. Duryev. Teichmüller curves in genus 2: square-tiled surfaces and modular curves. Preprint (2019).
[EMS] A. Eskin, H. Masur, and M. Schmoll. Billiards in rectangles with barriers. Duke Math. J. 118 (2003),

427–463.
[EMZ] A. Eskin, H. Masur, and A. Zorich. Moduli spaces of abelian differentials: the principal boundary,

counting problems, and the Siegel-Veech constants. Publ. Math. IHES 97 (2003), 61–179.
[EM] A. Eskin and M. Mirzakhani. Invariant and stationary measures for the SL(2,R) action on moduli

space. Publ. Math. IHES 127 (2018), 95–324.
[EMM] A. Eskin, M. Mirzakhani, and A. Mohammadi. Isolation, equidistribution, and orbit closures for

the SL(2,R) action on moduli space. Ann. of Math. 182 (2015), 673–721.
[FM] B. Farb and D. Margalit. A primer on mapping class groups. Princeton University Press (2012).
[Fil] T. Le Fils. Periods of abelian differentials with prescribed singularities. Int. Math. Res. Not. (2022),

5601–5616.
[Gut] R. Gutierrez-Romo. Classification of Rauzy-Veech groups: proof of the Zorich conjecture. Invent.

Math. 215 (2019), 741–778.
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